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Abstract

A subclass of Markov Decision Processes (MDPs), the Linearly solvable Markov

Decision Processes (LMDPs), which have discrete state space and continuous control

space, allow for a significant simplification of the inverse reinforcement learning

problem by eliminating the need to solve the forward problem, and requiring only the

unconstrained optimization of a convex and easily computable log-likelihood. This

however, has only been explored for the single-reward single-agent scenario, where a

single agent is assumed to be imposing optimal control under the influence of a single

fixed reward function. In this work, we aim to utilise the advantages in problem

formulation and ease of computation for LMDPs, for a multiple-agent, multiple-

reward scenario, using non-parametric Bayesian inverse reinforcement learning.

Keywords: Linearly solvable Markov Decision Process; Inverse Reinforcement Learn-

ing; Multiple Rewards; Non-parametric Bayesian Learning





Chapter 1

Introduction

Inverse reinforcement learning (IRL) is the problem of estimating or modeling the

reward or cost function an agent is acting under, given the behavioral data from

that agent and also utilizing the observed behavior of an expert to select optimal

actions. The last few decades have seen a surge of research in IRL, and appren-

ticeship learning or imitation learning through IRL[1][2]. IRL has gained sufficient

traction also in robotics, since estimating the reward function from the observable

optimal behavior of experts can allow appropriate modeling of the task and also

form a transferable definition of the task. Abbeel et al. (2004)[1] explores simulated

highway driving through apprenticeship learning, whereas Ziebar et al. (2008)[3]

uses imitation learning to model route preferences and infer destinations through

imitation learning, based on only partial trajectories.

The two main motivations of IRL:

• IRL may seem as the natural answer to modeling human and animal behavior

in nature [4][5]. When we examine behaviors of these agents in the environ-

ment, it can be much easier to approach the problem of estimating the reward

function, than to a priori be aware of what reward functions the agents are

acting under and estimate optimal action. For theoretical biology and econo-

metrics, IRL can allow for a more natural formulation of the problem.

1



2 Chapter 1. Introduction

• Additionally in certain complex environments, it can be intractable to infer

the optimal set of actions. For example, in driving a car from a starting point

to a destination, the problem can be formulated as a traditional reinforcement

learning problem, with the objective of learning an optimal policy. This might

pose the enormous challenge of modeling the reward function appropriately,

in an environment as complex as real-world driving. Posing this problem as

an IRL problem, i.e., observing the actions of an expert agent (human), and

inferring the reward function from that behavioral data might be a much easier

problem formulation.

We consider the problem of inverse reinforcement learning for Linearly Solvable

Markov Decision Processes (LMDPs)[?] when more than one reward function can be

present. The inverse problem in the case of standard MDPs[6][7] involves estimating

the underlying reward function distribution, while the optimally chosen actions and

corresponding states, and the underlying transition dynamics, i.e., the model of the

MDP environment is provided. In the case of LMDPs, although the aim remains the

same, obtaining the reward function (for a single reward scenario) is computationally

much more simple since the problem reduces to an unconstrained optimization of a

simple, easily computable function.

Todorov el al. (2010)[8] explores the estimation of reward functions from state tran-

sition pairs and uncontrolled dynamics of the LMDP, however, performs under the

assumption of a single reward function and the agent acting optimally based on

it. In real-life, data is often recorded from multiple agents working sub-optimally

under multiple distinct reward functions. Further, solving for the inverse reinforce-

ment problem for each distinct trajectory poses an additional problem since it is

often difficult to obtain enough data from one trajectory to effectively estimate the

underlying reward function.

Babes et al. (2011)[6] explores an approach of combining inverse reinforcement

learning with EM clustering, where inferred reward functions are used to cluster the

given behavioral data. Choi, J. Kim, (2012)[7] further explores the non-parametric
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Bayesian approach for reinforcement learning for multiple rewards utilizing Dirichlet

mixture models [9] for clustering, allowing a countably infinite number of mixture

components, unlike EM clustering which requires a predefined number of clusters

for the behavioral data. However, this method is confined to only standard MDPs,

and in this work, we explore the formulation and advantages of using LMDPs for

the non-parametric Bayesian inverse reinforcement learning case.

1.1 Objectives

The main objectives of this work are as follows :

• Extending the inverse RL formulation for LMDPs to the multiple reward set-

ting,

• Developing and implementing practical algorithms for this extension,

• Comparing experimentally the proposed methods with the existing ones pro-

posed in the literature.

1.2 Structure of the Report

In the next chapter, we will discuss the theoretical background of inverse rein-

forcement learning, Bayesian learning of IRL, Expectation Maximisation (EM) ap-

proach for clustering multiple rewards, non-parametric Bayesian inverse reinforce-

ment learning, and finally the LMDP formulation. In the third chapter, we will

then elaborate on the LMDP formulation for both the EM approach as well as the

non-Parametric Bayesian approach. In the 4th chapter, we will present our experi-

mental setup and results obtained along with relevant discussions. In our 5th and

final chapter, we will discuss the conclusions and future works that can be followed.



Chapter 2

Inverse Reinforcement Learning

Paradigm

The goal of IRL, is to estimate the reward function an agent is acting under, given the

trajectories from the agent and also the transition probabilities of the environment.

To introduce the formulation of IRL, we need to first introduce the standard Markov

Decision Procces notations and formulations that will be used throughout this work.

2.1 Markov Decision Process Notations and Formu-

lation

A discounted discrete space MDP can be defined as < S,A, P a
s,s′ , R, γ > where

• S is a finite set of states,

• A is a finite set of actions,

• P a
s,s′ is the probability associated with ending in state s′ from state s′ after

performing action a. Since we are defining a Markov process, the probability

of transition to state s′ only depends on the current state s and the action a

taken by the agent, and is independent of any other part of the trajectory.

4



2.1. Markov Decision Process Notations and Formulation 5

• R : S → R is the reward distribution in range [0, Rmax] (which can be trivially

extended to R : S × A→ R if needed).

• γ is the discount factor.

We can define policy as a mapping of the state space to the action space as π : S →

A, the value function as V : S → R, quantifying how "good" a particular state is,

and the state-action value as Q : S × A → R giving how desirable a state-action

pair is. Let the vector Vπ be the values of states under policy π and V∗ be the

optimal set of values, and our goal is to infer policy π under which Vπ = V∗. It can

be proved that there exists a deterministic policy π under which Vπ is maximized

for all s ∈ S .[10] [11]

Therefore the Bellman equations for such an MDP can be given as,

V π(s) = R(s) + γ
∑
s′

P
π(s)
s,s′ V

π(s′) (2.1)

and

Qπ(s, a) = R(s) + γ
∑
a′

P a
s,s′V

π(s′) (2.2)

where the optimal policy π satisfies the condition

π(s) ∈ argmax
a∈A

Qπ(s, a) (2.3)

In the problem of IRL, the main objective is to estimate the reward function R(s)

given the behavioral data of the agent assumed to be acting optimally. However,

in real-life situations, there is barely enough trajectory data from the agent to ap-

proach this problem analytically. For example, in an MDP, more than one reward

function can explain a sparse set of trajectories, and we need to take into account

the uncertainty in our inferences. Therefore we resort to Bayesian inference, where

we derive the posterior distribution of the reward by using the prior distribution of

reward functions and the likelihood of observing a particular trajectory/transition

from the agent given that reward. This is further elaborated in Section 2.2.
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2.2 Bayesian IRL

Typically in inverse reinforcement learning problems, the observed trajectory data

from the expert is often too sparse to accurately infer the underlying reward function.

Also, different trajectories can be often explained by more than one distinct reward

function. For example, as shown in [12], different reward functions can be used to

explain the same behavioral data obtained from an MDP shown in Fig1. Modeling

three reward functions with high positive values at S1, S2, S3 respectively can explain

similar trajectories. Therefore the uncertainty in the estimated reward function also

needs to be represented.

Figure 1: Figure from [12] shows an IRL example, where the action a1 is the optimal
action, and action a1 from state S0 has a probability of going to states S1, S2, S3 with
the probabilities 0.4, 0.3, 0.3 respectively, and the other transitions are deterministic.

The main objective of Bayesian IRL is to estimate a posterior distribution of the

reward function, given the prior distribution of the reward function and the prob-

abilistic model of the observed agent, given the reward function. Using the MDP

formulation defined in 2.1, we consider an MDP < S,A, P a
s,s′ , R, γ >, where an agent

χ chooses actions A, and the reward R is drawn from a predefined distribution with

prior PR and the data obtained from agent χ is X = {(s1, a1), (s2, a2), (s3, a3) . . . (sn, an)}.

Here we make two main assumptions about the agent χ:
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• χ is executing a stationary or time-invariant policy.

• χ is not executing a ϵ-greedy policy, i.e., it is not trying to explore the envi-

ronment, instead it already has a greedy policy and is trying to maximize its

accumulated rewards.

Owing to our first assumption of a stationary policy, the following independence

assumption can be made about a single trajectory of length n,

P (X|R) = P ((s1, a1)|R)P ((s2, a2)|R) . . . P ((sn, an)|R) (2.4)

Considering the state-action values Q∗(s, a), the agent trying to maximize the ac-

cumulated reward is more likely to choose the state-action value with the highest

value. This can be used to model the likelihood as,

P ((si, ai)|R) =
1

Zi

eαχQ∗(si,ai,R) (2.5)

where αχ ∈ R is a parameter used to denote the confidence in the agent χ’s ability

to choose the highest Q∗(si, ai), and Zi is the appropriate normalizing constant.

Therefore we can formulate the likelihood of the entire trajectory as

P (X|R) =
1

Z
eαχE(X,R) (2.6)

where E(X,R) denotes the expectation over the state-action values of the trajectory.

Using Bayes theorem, we can now express the posterior probability distribution of

the reward as

P (R|X) =
P (X|R)P (R)

P (X)

=
1

Z ′ e
αχE(X,R)P (R)

(2.7)

where Z ′ = Z · P (X). While computing Z ′ is very difficult, we can utilize sampling
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algorithms for inference.

2.3 Linearly Solvable Markov Decision Process

Linearly-Solvable MDPs (LMDPs) [13, 14] impose some restrictions on the dynamics

and the reward function that make the Bellman optimality equations linear. This

leads to a more efficient computation of the optimal policy [14] or the solution of

the inverse problem [8].

Besides from leading to a linear Bellman equation, LMDPs offer other computational

and theoretical benefits. For example, they are fundamental in the framework of RL

as probabilistic inference [15, 16]. Thanks to the linearity in the Bellman equation,

it is possible to compose a solution to a novel task from the solutions to previously

solved task without learning [17, 18]. Such a property has been used in recent works

combining compositionality and hierarchical reinforcement learning [19, 20, 21].

LMDPs have found applications across a wide array of domains, encompassing

robotics [22, 23, 24], multi-agent systems [25, 26, 27], or for finding near optimal

policies in other complex scenarios such as power grids [28], online forums [29],

crowd-sourcing [30], or rankings [31].

In this chapter, we briefly review the theory of LMDPs following closely the deriva-

tions from [14] and [8].

2.3.1 State space

We define S as a set of finite states with U(i) as a set of admissible controls for state

i ∈ S, l(i, u) ≥ 0 is the cost associated with being in state i and control "action"

u ∈ U(i). The stochastic matrix P (u) with elements pij gives the probability of

transitioning from state i to state j under control u. Initially considering a non-

empty set of states absorbing states A in the state space, the unique solution to the
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Figure 2: Schematic representation of a Linearly Solvable Markov Deciosion Process.

Bellman equation is given by

v(i) = min
u∈U(i)

{
l(i, u) +

∑
j

pij(u)v(j)

}
(2.8)

which is the analytical limit for traditional MDPs.

In our case of linearly-solvable MDPs, u ∈ R|S| is defined as a real-valued vector

having cardinality equal to the state space, and the elements u(j) have the effect of

imposing control on the existing uncontrolled transition probabilities of the original

MDP, allowing the controller to modify and rescale the underlying uncontrolled tran-

sition probabilities in any way. The controlled transition probabilities are defined

as

pi,j(u) = p̄i,j exp(uj) (2.9)

with p̄ij = 0 =⇒ pi,j(u) = 0 implying if the probability of a transitioning to a state

under the uncontrolled condition is 0, it cannot be scaled to a non-zero value by the

controller, and uj has no effect, and also the row-sum of P (u) = 1. The admissible

controls under these conditions can be therefore given as,

U(i) =

{
u ∈ R|S|;

∑
j

p̄i,j exp(uj) = 1; p̄ij = 0 =⇒ uj = 0

}
(2.10)
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The cost of imposing our control on the existing uncontrolled transition probabilities,

which is equivalent to the price the controller is expected to pay before observing its

defined transition, can be measured using KL-divergence between the two probability

distributions, given as

q(i, u) = KL(pi(u)||pi(0)) =
∑

j:p̄i,j ̸=0

pi,j(u) log
pi,j(u)
pi,j(0)

(2.11)

Since KL divergence ensures that q(i, u) ≥ 0, substituting 2.9 in 2.11 we get,

q(i, u) =
∑
j

pi,j(u)uj (2.12)

If a non-zero reward r(i) ≥ 0 is associated with every state i, and r(i) = 0 for

absorbing states A, the total cost associated with a state and control can be given

as

l(i, u) = −r(i) + q(i, u) (2.13)

Therefore the Bellman equation for the linearly solvable MDP can be given as,

v(i) = min
u∈U(i)

{
−r(i) +

∑
j

p̄i,j exp(uj)(uj + v(j))

}
(2.14)

2.3.2 Optimal control

To get the optimal control for this scenario, we can perform the constrained optimiza-

tion in closed form of 2.14 using the Lagrange multiplier, subject to the constraint

2.10. The Lagrangian for each i is therefore defined as

L(u, λi) =
∑
j

p̄i,j exp(uj)(uj + v(j)) + λi

∑
j

p̄i,j exp(uj)− 1

 (2.15)

Where pij ̸= 0, the only solution of 2.15 is given as,

u∗
j(i) = −v(j)− λi − 1 (2.16)
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The second derivative of equation 2.15 can be shown to be greater than 0 since

p̄i,j exp(u
∗
j(i)) ≥ 0, confirming that 2.16 gives us the optimal control. Applying the

constraint 2.10 to 2.16 to obtain the expression for λi, we can define the optimal

control law as,

u∗
j(i) = −v(j)− log

∑
k

p̄ik exp(−v(k))

 (2.17)

The optimal controller defined here is therefore a high-level controller, which tells

the Markov chain to go to "good" states, which high v(i) without defining how to

get to those states. The optimally controlled transition probabilities imposed over

the natural uncontrolled transition probabilities can be given as,

pij(u∗(i)) =
p̄ij exp(−v(j))∑
k p̄ik exp(−v(k))

(2.18)

Using the optimal control obtained in 2.17 in the Bellman equation 2.14 and taking

exponents on both sides, we can derive

exp(−v(i)) = exp(r(i))
∑
j

p̄ij exp(−v(j)) (2.19)

Introducing the exponential transformation z(i) = exp(−v(i)), we obtain the min-

imised linear Bellman equation

z(i) = exp(r(i))
∑
j

p̄ijz(j) (2.20)

which can be reduced to a linear eigenvalue problem as,

z = GP̄z (2.21)

where vector z has elements z(i) and diagonal matrix G has values r(i) along its

main diagonal. In our case, for discounted-reward infinite-horizon problems, 2.21 is

given as

z = GP̄zγ (2.22)
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where γ < 1 is the given discount factor. This is solved by iterating for zk as

zk+1 = GP̄zγk, z0 = 1 (2.23)

which is equivalent to the power method, and can be shown to converge to the largest

eigenvector. This formulation of traditional MDPs provides accurate approximations

and is computed far more efficiently, for optimal control problems. We aim to utilize

these properties of the LMDP for nonparametric Bayesian inverse reinforcement

learning for the multiple rewards case.

2.3.3 OptV

Todorov et al.(2010)[8] introduces inverse optimal control for LMDPs, estimating

the optimal control and thus the value function, and reward, since they are uniquely

related to the control. Todorov further shows that the LMDP formulation allows for

the problem to be reduced to an easily computable convex optimization problem.

Assuming we are given the uncontrolled dynamics p and a set of transitions {xn, x
′
n}n=1,...,N ,

sampled from the optimally controlled dynamics, the optimal control can be given

as p(x′|x)z(x′)
G[z(·)(x)] , where

G[z(·)(x)] =
∑
x′

p(x′|x)z(x′). (2.24)

Therefore, the negative log-likelihood can be derived as

L[z(·)] = −
∑
n

log z(x′
n) +

∑
n

log
∑
x′

p(x′|xn)z(x
′). (2.25)

Here, rewriting equation 2.25 in terms of v, the function L[v(·)] becomes convex,

since it is a linear function containing log, summation, and exponents. An additional

improvement can be made when the trajectory data is much higher than the number

of states in the LMDP, by rewriting L as a function of visitation counts. The gradient

and Hessian of equation 2.25 can be computed analytically, followed by Newton’s

method with backtracking line search.
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Although the LMDP formulation here greatly simplifies the computation compared

to standard MDPs, this algorithm still only allows the estimation of a single reward

function. This approach can be used to estimate each reward per trajectory for the

multiple rewards case followed by unsupervised clustering, but as mentioned before,

there might not be enough recorded transitions from a single ground truth reward

to allow for an efficient approximation.

2.4 Expectation Maximization MLIRL for Multiple

Rewards

Babes et al.[6] proposes the estimation of multiple reward functions using an Ex-

pectation Maximization (EM) approach, and shows that a gradient ascent method

modifying the reward function maximizing the likelihood of the behavioral data can

be used to estimate multiple reward functions. They propose Maximum Likelihood

Inverse Reinforcement Learning (MLIRL) similar to Bayesian IRL, a probabilistic

model that aims to maximize likelihood.

Assuming the reward functions are parameterized by θA, the state-action values

under reward θA are defined as QθA(s, a) for state and action s and a which can be

given by the standard MDP formulation as

QθA(s, a) = θTAϕ(s, a) + γ
∑
s′

P a
s,s′ ⊗a′ QθA(s

′, a′) (2.26)

where ϕ(s, a) is a feature vector for a state-action pair, and

⊗aQ(s, a) =
∑
a

Q(s, a)eβQ(s,a)/
∑
a′

eβQ(s,a′) (2.27)

which is the Boltzmann exploration [32] which makes the likelihood infinitely differ-

entiable. The Boltzmann exploration policy can therefore be given by,

πθA(s, a) =
eβQθA

(s,a)∑
a′ e

βQθA
(s,a′)

. (2.28)
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The likelihood of the given behavioral data can be expressed using this as

L(X|θ) = log
N∏
i=1

∏
(s,a)∈ξi

πθ(s, a)
wi =

N∑
i=1

∑
(s,a)∈ξi

wi log πθ(s, a), (2.29)

where wi gives the frequency of the trajectory i. Algorithm 1 from Babes et al.[6]

shows how the maximum likelihood solution θA = argmaxθ L(X|θ) can be estimated.

Algorithm 1 Maximum Likelihood IRL
1: Input: MDP, ϕ, trajectories {X1, . . . ,Xn}, trajectory weights {w1, . . . , wn},

number of iterations M , step-size t.
2: Initialize: randomly reward weights θ1.
3: for t = 1 to M do
4: Compute Qθt ,πθt .
5: L =

∑
i wi

∑
(s,a)∈ξ log πθt(s, a)

6: θt+1 ← θt + αt∇L.
7: Output: return θA = θM .

The complete algorithm EM-MIRL proposed alternates between an expectation and

a maximization step to estimate the reward functions. Defining ztij as the probability

of trajectory i belonging to cluster j and ρtj as the prior probability of cluster j at

iteration t, the expectation step of the EM algorithm can be given as,

ztij =
∏

(s,a)∈ξi

1

Z
πθtj

(s, a)ρtj, (2.30)

where Z is the normalization factor. In the maximization step, the goal is to find

reward weights which maximized the likelihood of the observed trajectory data,

which is also the output of the MLIRL algorithm 1.

The complete algorithm for EM trajectory clustering can therefore be given as

Although this approach allows for the estimation of multiple reward functions, it

still requires the prior knowledge of the number of appropriate clusters K.
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Algorithm 2 EM Trajectory Clustering
1: Input: Trajectories {X1, . . . ,Xn} obtained from different ground truth rewards,

number of clusters K, target number of iterations T .
2: Initialize: ρ1, . . . , ρK θ1, . . . , θK randomly.
3: for t = 1 to T do
4: E step: compute zij =

∏
(s,a)∈ξi

1
Z
πθj(s, a)ρj, where Z is the normalizing

factor.
5: M step: For all l, ρl =

∑
i zil/N . Compute θl via MLIRL given in algorithm

1 on X with weight zij on trajectory ξi.

2.5 Non-parametric Bayesian IRL for Multiple Re-

wards

In inverse reinforcement learning the main objective is to derive the underlying re-

ward/cost function of an environment from the state-action pair and uncontrolled

transitions or model of the environment. In Todorov et al. (2010)[8], and as men-

tioned in Section 2.3.3, the inverse optimal control for LMDPs has been reduced to an

unconstrained convex optimization of an easily-computed function defined as OptV,

which works on any dataset of consecutive pairs of state transitions {xn, x
′
n}n=1···N

sampled from the optimal control law π∗ as

xn+1 ∼ π∗(·|xn) (2.31)

which assumes a single agent acting under optimally to maximize a single reward

function. In practical scenarios, behavioral data is often collected from multiple

agents maximizing potentially distinct underlying reward functions, and each tra-

jectory may not contain enough data to infer the underlying reward function ac-

curately. Choi, J. Kim (2012)[7], introduces a nonparametric Bayesian approach

to address the IRL problem in the case of traditional MDPs with multiple reward

functions, develops a Metropolis-Hastings sampler utilizing the gradient of the re-

ward function posterior to infer reward functions from the given trajectory data,

and extend the problem to estimating the reward associated with a new trajectory.

In our study, we extend the problem to the case of LMDPs taking advantage of the
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ease of computation.

An initial approach to Bayesian inverse reinforcement learning, as explored in Section

2.2 in traditional MDPs as explored in Ramachandran et al.(2007)[12] assumes the

trajectory data is obtained from a single reward function, the prior encoded as the

reward function preference, and the likelihood gives the measure of how likely the

given trajectory is to be produced from the predicted reward function.

Assuming that the reward function entries are independently identically distributed

(i.i.d.), the prior on the reward can be defined as P (r) =
∏D

d=1 P (rd). Various

distributions like uniform, Laplace, or beta distributions can be utilised for the

reward prior.

The likelihood of observing a set of transitions under optimal control for the MDP,

can be given as,

P (X|r, η) =
M∏

m=1

H∏
h=1

P (am,h|sm,h, r, η) =
M∏

m=1

H∏
h=1

exp(ηQ∗(sm,h, am,h; r))∑
a′ exp(ηQ

∗(sm,h, a; r))
(2.32)

for M trajectories with H transitions, where η is the confidence parameter of the

selection action and Q∗(·, ·; r) denotes the optimal value of the Q function under

reward r. The posterior over the reward functions can be given by Bayes rule as

P (r|X , η, µ, σ) = P (X|r, η)P (r|µ, σ) (2.33)

which is still however limited to a single trajectory and single reward function.

In the multiple rewards scenario, we make one crucial assumption - each trajectory

in the behavioral data is generated by an agent under only one reward function,

i.e. within the transitions in a trajectory, the reward function remains unchanged.

However, no assumptions are made about which agent generates which trajectory

or about how many agents are present.

Unlike EM-MLIRL[6], Choi, J. Kim (2012)[7] combines the non-parametric Bayesian

approach to inverse reinforcement learning with Dirichlet process mixture model[9],
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allowing for clustering of trajectories under the estimated underlying reward func-

tions, without having to specify the number of clusters in advance.

2.5.1 DPM-BIRL for Multiple Reward Functions

EMIRL as explained in Section 2.4 though extends this formulation to estimate mul-

tiple rewards, the number of clusters of rewards still needs to be predefined. Utilizing

the Dirichlet Process Mixture (DPM) model with Bayesian Inverse Reinforcement

Learning (BIRL), we can place a Dirichlet process prior on the reward function rk,

and estimate multiple reward functions without having to predefine the number of

clusters. We can further assume that the obtained behavioral data is being drawn

from the following generative process -

1. The cluster assignment for a set of trajectories cm is being drawn as -

p|α ∼ Dirichlet(α/K, ..., α/K)

cm|p ∼Multinomial(p1, ..., pK)

2. The reward function rk is being drawn from P (r) =
∏D

d=1 P (rd).

3. The trajectory X is being drawn from P (Xm|rcm , η) as given by equation 2.32.

The graphical model of DPM-BIRL is shown in 5.

Figure 3: Graphical model of BIRL for MDP.

The joint posterior of the reward functions and the cluster assignment can be given

as

P (c, rk|X , η, µ, σ, α) = P (c|α)
K∏
k=1

P (rk|Xc(k), η, µ, σ) (2.34)



18 Chapter 2. Inverse Reinforcement Learning Paradigm

Figure 4: Graphical model of DPM-BIRL for MDP.

where the posterior P (rk|X , η, µ, σ) is given by equation 2.33 and c =
{
cm

}M

m=1
, rk ={

rk
}K

k=1
. Metropolis-Hastings (MH) algorithm can be used for inference, sampling

each variable in turn. To sample cm for the MH update, the conditional distribution

can be defined as

P (cm|c−m, rk,X , η, α) ∝ P (Xm|rcm , η)P (cm|c−m, α)

P (cm|c−m, α) ∝


n−m,cj , if cm = cj for some j

α if cm ̸= cj for all j

(2.35)

where c−m is the set of all ci such that i ̸= m, and n−m,cj is the total number of

trajectories (including Xm) assigned to the cluster cj.

For the MH update, conditional distribution for sampling rk is given as,

P (rk|c, r−k,X , η, µ, σ) ∝ P (Xc(k)|rk, η)P (rk|µ, σ) (2.36)

The resulting MH algorithm consists of two steps-

1. Updating cluster assignment c - From equation 2.35, we sample a new

cluster c′m, and if c′m is not present in c−m, a new reward function rc′m is drawn,

and we set cm = c′m with the acceptance probability of min
{
1,

P (Xm|rc′m ,η)

P (Xm|rcm ,η)

}
.

2. Updating reward function
{
rk
}K

k=1
- A new reward function r′k is sampled
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as

r′k = rk +
τ 2

2
∇ log f(rk) + τϵ (2.37)

and the reward function is set as rk = r′k with the acceptance probability

min
{
1,

f(r′k)g(r
′
k,rk)

f(rk)g(rk,r′k)

}
where ϵ is sampled from a normal distribution N (0, 1), τ

is a non-negative real number for scaling, f(rk) is the target distribution for

the MH update and the function g(x, y) is given (from [33]) by the equation,

g(x,y) =
1

2πτ 2

∥∥∥∥x− y− 1

2
τ 2∇ log f(x)

∥∥∥∥2

2

(2.38)

Here, the target distribution f(rk) is equal to P (Xc(k)|rk, η)P (rk|µ, σ).

Therefore, the complete algorithm for estimating multiple rewards for MDPs is

shown in 3, and the graphical model of DPM-BIRL is shown in 5.

Algorithm 3 Metropolis-Hastings algorithm for MDP

1: Initialise c and
{
rk
}K

k=1
2: for t = 1 to maxiter do
3: for m = 1 to M do
4: c′m ∼ P (cm|c−m, α)
5: if c′m /∈ c−m then rc′m ∼ P (r|µ, σ)
6: < cm, rm >←< c′m, r′m > with probability min

{
1,

P (Xm|rc′m ,η)

P (Xm|rcm ,η)

}
7: for k = 1 to K do
8: ϵ ∼ N (0, 1)
9: r′k ← rk + τ2

2
∇ log f(rk) + τϵ

10: r← r′k with probability min
{
1,

f(r′k)g(r
′
k,rk)

f(rk)g(rk,r′k)

}
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Bayesian IRL for Multiple Reward

setting in LMDPs

As discussed in Section 2.3, LMDPs make computations and inferences far more

tractable as compared to MDPs, and therefore can be considered an efficient ap-

proximation of the traditional MDP setting. Also, as mentioned in Section 2.5,Choi,

J. Kim, (2012)[7] have established the formulation of the non-parametric Bayesian

inverse reinforcement learning framework for estimating reward functions for only

the traditional MDP case. Therefore in this work, our primary objective is to extend

the framework to the LMDP setting which can allow both faster computations and

reasonable approximation of the estimated reward functions.

In the LMDP setting, under optimal control, the trajectories obtained from the

agent are of the form, X = {(s0, s1), (s1, s2), (s2, s3) . . . (sn−1, sn)}, i.e., state pairs, in

absence of explicit "actions" from the agent. Therefore the probability distribution

of a state-state transition (si, si+1) under this context can be reformulated from

equation 2.5, as

P ((si, si+1)|R) =
1

Zi

eαχz∗(si,si+1,R), (3.1)

where the normalizing value Zi is dependent on the possible neighbors of state si.

Therefore in this context, the likelihood of the M trajectories under a reward func-

20
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tion r, given as equation 2.32 for the MDP setting, can be modified as,

P (X|r, η) =
M∏

m=1

H∏
h=1

P (s′m,h|sm,h, r, η) =
M∏

m=1

H∏
h=1

exp(η log(z∗(s′m,h; r)))∑
s′′∈ne(sm,h)

exp(η log(z∗(s′′m,h; r)))
(3.2)

where z∗(s; r) is the desirability value of a state s under reward function r, H is the

number of transitions, and η is the confidence parameter of the optimal control.

Following the DPM-BIRL algorithm steps as given in Section 2.5.1, we keep the

cluster assignment step unchanged, however, the reward update step requires the

gradient∇ log f(rk) where f(rk) is the target distribution of the Metropolis-Hastings

update, or the unnormalized posterior of the rk, i.e., P (Xc(k)|rk, η)P (rk|µ, σ) as given

in equation 2.37.

In the LMDP setting, the gradient ∇ log f(rk) can be obtained by differentiating

the log-likelihood and the log-prior given in equation 3.2, as

∇ log f(rk) = ∇ log(P (Xc(k)|rk, η)) +∇ log(P (rk|µ, σ)). (3.3)

Considering a known prior on the reward rk, the derivative of the likelihood of one

particular transition, with respect to all features of the reward rk can be obtained

by differentiating equation 3.2 for a single transition from state s to s′, as,

d

dr(i)

[
exp(η(z(s′)))∑

s′′∈ne(s) exp(η(z
∗(s′′)))

]
=

η exp(η(z(s′)))∑
s′′∈ne(s) exp(η log(z(s

′′)))
· dz(s

′)

dr(i)

− exp(η(z(s′)))(∑
s′′∈ne(s) exp(η log(z(s

′′)))
)2

∑
s′′∈ne(s)

η exp(η(z(s′′)))
dz(s′′)

dr(i)
. (3.4)

The derivative of z-values with respect to r(i) can be derived from equation 2.20 as,

dz(i)

dr(i)
=

1

γ
z(i) +

exp(r(i))

γ
·
∑
j

pij
dz(j)

dr(i)
(3.5)
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which can be empirically shown to converge for r(i) ∈ [−1, 0].

The modified graphical model of DPM-BIRL for LMDP setting is given in Fig 5.

Figure 5: Graphical model of DPM-BIRL for LMDP.

Similarly for the EM-MLIRL approach, the likelihood from equation 2.29 can be

rewritten as,

L(X|θ) =
N∑
i=1

∑
(s,s′)∈ξi

wi log
eβz(s,s

′;θ)∑
s′′ e

βz(s,s′′;θ)
, (3.6)

and ∇L can be computed as shown in equation 3.4 for the MLIRL update.
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Experimental Results

We evaluate the performance of DPM-BIRL in the both the MDP and LMDP sce-

nario for a multiple rewards gridworld. We estimate trajectory clusters and associ-

ated rewards from the behavioral data, and compare the estimated rewards to the

ground truth, by evaluating the optimal policies obtained in both the cases.

4.1 Gridworld Problem

Here, we take a sample grid world (Fig 6), of size 8×8, where each of the 64 positions

of the agent on the grid is considered as a state, with no absorbing or terminal states.

The agent is allowed to move in all 4 directions, East, West, North, South, and the

uncontrolled transition probability is considered .25 in all directions, except for the

boundary positions. The grid is also sub-partitioned into 2 × 2 blocks and the

feature function is defined as unity over each subgrid. The reward function was

linearly parameterised as R(s) =
∑D

d=1 rdϕd(s) where ϕd : S → R and r = [r1, ...rD].

The performance of the algorithm is evaluated by the expected value difference

(EVD) given by |V ∗(rg) − V u∗(rest)(rg)| where rg is the underlying ground truth

reward function responsible for the behavioral data, and rest is our estimated reward

function associated with the trajectory, and V u∗(rest)(rg) is the value of the states of

the optimally controlled LMDP under rest, evaluated over rg. The EVD here thus

23
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gives a measure of the performance error in estimating the ground truth reward

function accurately.

Figure 6: Gridworld with 8 × 8 grids, the colormap indicates the z or desirability
values of the LMDP.

We first calculate the EVD between the ground truth and estimated rewards, for

a confidence value of η = 10 and compute the average over the total number of

trajectories.

For this task, we assume 3 ground truth reward functions and plot the average

EVD obtained as we increase the number of trajectories generated for each reward

function/agent. As observed in Fig 7, the graph shows an overall downward trend

as we increase the number of trajectories per agent, implying our estimated reward

functions are closer and closer to the ground truth. Comparing the LMDP, MDP,

and EM-MLIRL[6] for the LMDP case with the number of predefined clusters set to

3, it can be observed that in both the LMDP and MDP scenario, the overall average

EVD is much lower, along with noise due to random initialization of the ground
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Figure 7: Average EVD with increasing number of trajectories per agent.

truth rewards and the initial estimated rewards. The average EVDs are obtained

by taking an average over 20 runs with random initializations for each case.

Figure 8: F1 scores with an increasing number of trajectories per agent.
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Fig 8 shows the F1 scores obtained from the clustering for the three cases for increas-

ing number of ground truth trajectories per agent. The EM-MLIRL(3) performs

much worse compared to the DPMH (Langevin) cases, whereas both the MDP and

LMDP scenarios have comparable and higher F1 scores.

(a) z function

(b) reward function

Figure 9: Comparison of ground truth z values vs estimated z values (Fig 9a) and
estimated rewards (Fig 9a) with increasing number of ground truth trajectories
generated.

We further observe the ground truth rewards and z functions estimated for different

numbers of ground truth trajectories used for inference in the DPM-BIRL (LMDP)

setting. As seen in Fig 9a, the z functions estimated for a higher number of tra-

jectories per agent (=3) resembles the ground truth z function much more closely

as compared to the 1 trajectory per ground truth reward case, which enforces the

decrease in EVD values as shown in Fig 7. In Fig 9b, the corresponding estimated

reward functions are shown.
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Figure 10: Trajectories and z values obtained for different values of s0 for a deter-
ministic case.

Figure 11: Comparison between average EVD values obtained over iterations for
different values of s0.

The similarity of both the estimated reward functions and the z functions however

are dependent on the the initial state s0 of the trajectories. Fig 10 shows three

sampled trajectories of different lengths. It can be observed that with the increase

in length of the trajectory, i.e., s0 is situated at a much larger distance from the

reward concentration, we get a lesser value of EVD as shown in Fig 11. This can be

due to the decrease in "exploration" of the gridworld if the initial state s0 is close

to the reward concentration. Choosing an initial point at a higher distance allows

more discovery of the gridworld, and thus the trajectory has more information that

can be used to accurately estimate the underlying reward function.
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Figure 12: Average EVD with number of iterations, for DPM-BIRL Langevin
(LMDP), MCMC (LMDP) and Langevin (MDP).

We also compare the effect of using the gradients of the estimated likelihood with

respect to the reward, with only MCMC sampling. In Fig 12, for clustering of 3

ground truth trajectories, we can observe that the DPMH(LMDP) with the use

of likelihood gradients performs significantly better and converges to a much lower

average EVD value as compared to both random sampling and DPMH (MDP),

where, the latter also takes significantly more number of iterations to converge.

Fig 13 shows the comparison of average EVD values, for different values of η for

DPM (LMDP). We compare 3 values of η, and as the value of η decreases, since

the trajectories now produced from the ground truth reward functions contain much

more noise, our ground truth algorithm performs much worse. Increasing the value

of η ensures much less noise in the ground truth trajectories, therefore we can observe

smaller values for the calculated average EVD.



4.1. Gridworld Problem 29

Figure 13: Average EVD of trajectories obtained from DPM (Langevin) LMDP,
with an increasing number of trajectories per agent, for different values of η.
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Discussion

In this work, we introduce the formulation of LMDPs in nonparametric Bayesian

approach to IRL for multiple reward functions using the Dirichlet process mixture

model, and extend the existing work in inverse optimal control beyond a single fixed

reward function. Our method allows us to learn an unspecified number of reward

functions for LMDPs and also permits incorporation of any domain knowledge of

the reward function as the reward prior in the Bayes equation. As observed from

the results, the LMDP formulation converges to a lower error value for the mul-

tiple reward scenario, as compared to the standard MDP formulation, as well as

taking much less time for computation, since policy iteration in MDP is far more

computationally expensive.

5.1 Future Work

1. The ease of computation allows us to explore and experiment with varying

real life behavioral data, which is often generated by multiple agents, acting

under distinct, unknown reward functions.

2. Current ongoing work is on estimating the reward function associated with a

new trajectory, without training on it.

3. Exploring performance on different distribution of ground truth reward func-

30
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tions as well as different starting states for the generated trajectories.

4. We want to further explore function approximations for LMDPs for this mul-

tiple rewards scenario, to allow us to estimate reward functions for larger state

spaces, where tabular LMDPs might be too expensive.
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