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Regular Decision Process
• In an episodic Non-Markov Decision Process 〈O, A, R, T, R, H〉, the

transition probabilities T : (AO)∗ × A → ∆(O) and rewards
R : (AO)∗ × A → R are functions of the entire interaction history (AO)∗

• In a Regular Decision Process (RDP), T and R depend regularly on the
interaction history, and the dynamics can be represented by a
Probabilistic-Deterministic Finite Automaton (PDFA)

• Example: T-maze domain

Figure: T-maze [1] with corridor length N = 10. The observation at the initial position S
indicates the position of the goal G at the end of the corridor for the current episode.

Objective
Objective: Given a dataset D of episodes, collected from an
unknown RDP R and unknown behavior policy πb, compute
a near-optimal policy for R, using the smallest D possible.
Question: A near-optimal policy can be computed from the PDFA of
the RDP. Can we learn the PDFA of an RDP R from an interaction
history?

AdaCT-H
AdaCT-H [3] returns the PDFA of an RDP R and achieves a sample
complexity with polynomial dependency on the problem parameters

The bottleneck is the statistical test on the prefix distance defined as
Lp

∞(p1, p2) = max
u∈[0,`],e∈Eu

|p1(e ∗) − p2(e ∗)|

The sample complexity depends inversely on the Lp
∞-distinguishability µ0

which is the largest value such that for each p1 6= p2 on suffixes,
Lp

∞(p1, p2) ≥ µ0 > 0
For example, in T-maze, Lp

∞-distinguishability decreases exponentially
with the corridor length N .

Contributions
A practical implementation of AdaCT-H that reduces the memory and
time complexity
• Exploit the Count-Min-Sketch (CMS) data structure to reduce the

memory complexity of storing the empirical distributions on suffixes
• Develop a novel language metric LX, based on the theory of formal

languages, and define a hierarchy of language families that removes
the dependency on Lp

∞-distinguishability and is exponentially more
sample efficient in domains having low complexity in
language-theoretic terms

Language Hierarchies
• We define the following sets of basic patterns Gi of increasing

complexity
G1 =

{
aO/R | a ∈ A

}
∪

{
AO/r | r ∈ R

}
∪

{
Ao/R | o ∈ O

}
,

G2 = G1 ∪
{
ao/R | a ∈ A, o ∈ O

}
∪

{
aO/r | a ∈ A, r ∈ R

}
∪

{
Ao/r | a ∈ A, r ∈ R

}
.

• The operator C`
k which maps any set of languages G to a new set of

languages:
C`

k(G) = {{x0G1 · · · xk−1Gkxk | x0, . . . , xk ∈ Γ∗, |x0 · · · xk| = (` − k)}
| G1, . . . , Gk ∈ G}.

• Two-dimensional hierarchy of sets Xi,j of languages:
Xi,j = ⋃

k∈j C`
k(Gi), ∀i ∈ 3, ∀j ∈ `.

• Induced language metric: LX(p, p′) := maxX∈X |p(X) − p′(X)|,
where p(X) := ∑

x∈X p(x).

Analysis
Theorem 1: AdaCT-H(D, δ) returns a minimal RDP R with probabil-
ity at least 1−3AOQδ when CMS is used to store the empirical probability
distributions of episode suffixes, the statistical test is

Lp
∞(Z1, Z2) ≥

√
8 log(4(ARO)H−t/δ)/ min(|Z1|, |Z2|),

and the size of the dataset is at least |D| ≥ Õ(HC∗
R log(1/δ)/d∗

minµ
2
0),

where d∗
min = mint,q,ao d∗

t (q, ao) and C∗
R is the single-policy concentrability

of R.

Theorem 2: AdaCT-H(D, δ) returns a minimal RDP R with probabil-
ity at least 1 − 2AOQδ when the statistical test is implemented using the
language metric LX and equals

LX(Z1, Z2) ≥
√

2 log(2|X|/δ)/ min(|Z1|, |Z2|),
and the size of the dataset is at least |D| ≥ Õ(C∗

R log |X | log(1/δ)/d∗
minµ

2
0).

Results

Figure: Summary of the experiments. We compare our two approaches against
FlexFringe[2] for the average reward over 100 episodes, time taken(seconds) and size of
the state space learned (Q).

Figure: Impact of increasing the length of the corridor for the T-maze domain.
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