Tractable Offline Learning of Regular Decision Processes

Ahana Deb¹ Roberto Cipollone² Anders Jonsson¹ Alessandro Ronca³ M. Sadegh Talebi⁴ ¹Universitat Pompeu Fabra ²Sapienza University of Rome ³University of Oxford ⁴University of Copenhagen

Regular Decision Process

• In an episodic Non-Markov Decision Process $\langle O, A, R, T, R, H \rangle$, the transition probabilities $T: (AO)^* \times A \to \Delta(O)$ and rewards $R: (AO)^* \times A \to \mathbb{R}$ are functions of the entire interaction history $(AO)^*$

Language Hierarchies

• We define the following sets of basic patterns \mathcal{G}_i of increasing complexity

$$\mathcal{G}_1 = \left\{ aO/R \mid a \in A \right\} \cup \left\{ AO/r \mid r \in R \right\} \cup \left\{ Ao/R \mid o \in O \right\},$$

- In a Regular Decision Process (RDP), T and R depend regularly on the interaction history, and the dynamics can be represented by a Probabilistic-Deterministic Finite Automaton (PDFA)
- Example: T-maze domain

Figure: T-maze [1] with corridor length N = 10. The observation at the initial position S indicates the position of the goal G at the end of the corridor for the current episode.

Objective

Objective: Given a dataset D of episodes, collected from an unknown RDP R and unknown behavior policy π^b , compute a near-optimal policy for \mathbf{R} , using the smallest D possible. **Question**: A near-optimal policy can be computed from the PDFA of the RDP. Can we **learn** the PDFA of an RDP **R** from an interaction history?

AdaCT-H

- $\mathcal{G}_2 = \mathcal{G}_1 \cup \left\{ ao/R \mid a \in A, \, o \in O \right\} \cup \left\{ aO/r \mid a \in A, \, r \in R \right\}$ $\cup \{Ao/r \mid a \in A, r \in R\}.$
- The operator C_k^{ℓ} which maps any set of languages \mathcal{G} to a new set of languages:

 $C_{k}^{\ell}(\mathcal{G}) = \{ \{ x_{0}G_{1} \cdots x_{k-1}G_{k}x_{k} \mid x_{0}, \dots, x_{k} \in \Gamma^{*}, |x_{0} \cdots x_{k}| = (\ell - k) \}$ $|G_1,\ldots,G_k\in\mathcal{G}\}.$

- Two-dimensional hierarchy of sets $X_{i,j}$ of languages: $X_{i,j} = \bigcup_{k \in j} C_k^{\ell}(\mathcal{G}_i), \forall i \in 3, \forall j \in \ell.$
- Induced language metric: $L_X(p, p') \coloneqq \max_{X \in X} |p(X) p'(X)|$, where $p(X) \coloneqq \sum_{x \in X} p(x)$.

Analysis

Theorem 1: ADACT-H (D, δ) returns a minimal RDP R with probability at least $1 - 3AOQ\delta$ when CMS is used to store the empirical probability distributions of episode suffixes, the statistical test is

 $L^{\mathsf{p}}_{\infty}(\mathcal{Z}_1, \mathcal{Z}_2) \ge \sqrt{8 \log(4(ARO)^{H-t}/\delta)} / \min(|\mathcal{Z}_1|, |\mathcal{Z}_2|),$ and the size of the dataset is at least $|D| \geq \widetilde{\mathcal{O}}(HC_{\mathbf{R}}^* \log(1/\delta)/d_{\min}^* \mu_0^2)$, where $d_{\min}^* = \min_{t,q,ao} d_t^*(q,ao)$ and $C_{\mathbf{R}}^*$ is the single-policy concentrability of \mathbf{R} .

ADACT-H [3] returns the PDFA of an RDP \mathbf{R} and achieves a sample complexity with polynomial dependency on the problem parameters

Input: Dataset \mathcal{D} of traces in Γ^{H+1} , failure probability $0 < \delta < 1$ **Output:** Set \mathcal{Q} of RDP states, transition function $\tau : \mathcal{Q} \times \mathcal{AO} \to \mathcal{Q}$ 1 $\mathcal{Q}_0 \leftarrow \{q_0\}, \mathcal{Z}(q_0) \leftarrow \mathcal{D}$ // initial state **2** for t = 0, ..., H do $\mathcal{Q}_{\mathsf{c},t+1} \leftarrow \{qao \mid q \in \mathcal{Q}_t, ao \in \mathcal{AO}\}$ // get candidate states foreach $qao \in \mathcal{Q}_{c,t+1}$ do $\mathcal{Z}(qao) \leftarrow \{e_{t+1:H} \mid aroe_{t+1:H} \in \mathcal{Z}(q)\}$ // compute suffixes $q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}} \leftarrow rg\max_{qao \in \mathcal{Q}_{\mathsf{c},t+1}} |\mathcal{Z}(qao)|$ // most common candidate 5 $\mathcal{Q}_{t+1} \leftarrow \{q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}\}, \tau(q_{\mathsf{m}}, a_{\mathsf{m}}o_{\mathsf{m}}) = q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}$ // promote candidate 6 // remove from candidate states $\mathcal{Q}_{\mathsf{c},t+1} \leftarrow \mathcal{Q}_{\mathsf{c},t+1} \setminus \{q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}\}$ for $qao \in \mathcal{Q}_{c,t+1}$ do 8 Similar $\leftarrow \{q' \in Q_{t+1} \mid \text{not TESTDISTINCT}(t, \mathcal{Z}(qao), \mathcal{Z}(q'), \delta)\}$ // confidence test 9 if Similar = \emptyset then $Q_{t+1} \leftarrow Q_{t+1} \cup \{qao\}, \tau(q, ao) = qao$ // promote candidate 10 else $q' \leftarrow$ element in Similar, $\tau(q, ao) = q', \mathcal{Z}(q') \leftarrow \mathcal{Z}(qao)$ // merge states 11 end 12 13 end 14 return $Q_0 \cup \cdots \cup Q_{H+1}$, τ 15 **Function** TESTDISTINCT(t, Z_1, Z_2, δ) return $L^{\mathsf{p}}_{\infty}(\mathcal{Z}_1, \mathcal{Z}_2) \geq \sqrt{2\log(8(ARO)^{H-t}/\delta)/\min(|\mathcal{Z}_1|, |\mathcal{Z}_2|)}$ 16

The bottleneck is the statistical test on the prefix distance defined as

 $L^{\mathsf{p}}_{\infty}(p_1, p_2) = \max_{u \in [0,\ell], e \in E_u} |p_1(e^*) - p_2(e^*)|$

The sample complexity depends inversely on the L^{p}_{∞} -distinguishability μ_{0} which is the largest value such that for each $p_1 \neq p_2$ on suffixes,

 $L^{\mathsf{p}}_{\infty}(p_1, p_2) \ge \mu_0 > 0$

Theorem 2: ADACT-H (D, δ) returns a minimal RDP R with probability at least $1 - 2AOQ\delta$ when the statistical test is implemented using the language metric L_X and equals

 $L_X(\mathcal{Z}_1, \mathcal{Z}_2) \ge \sqrt{2\log(2|X|/\delta)/\min(|\mathcal{Z}_1|, |\mathcal{Z}_2|)},$ and the size of the dataset is at least $|D| \geq \widetilde{\mathcal{O}}(C_{\mathbf{R}}^* \log |\mathcal{X}| \log(1/\delta)/d_{\min}^* \mu_0^2)$.

Results

		FlexFringe			CMS			Language metric		
Name	H	\overline{Q}	r	time	\overline{Q}	r	time	\overline{Q}	r	time
Corridor	5	11	1.0	0.03	11	1.0	0.3	11	1.0	0.01
T-maze(c)	5	29	0.0	0.11	104	4.0	10.1	18	4.0	0.26
Cookie	9	220	1.0	0.36	116	1.0	6.05	91	1.0	0.08
Cheese	6	669	$0.69\pm.04$	19.28	1158	$0.4\pm.05$	207.4	326	$0.81 \pm .04$	2.23
Mini-hall	15	897	$0.33 \pm .04$	25.79	-	-	-	5134	$0.91 \pm .03$	23.9

Figure: Summary of the experiments. We compare our two approaches against FlexFringe[2] for the average reward over 100 episodes, time taken(seconds) and size of the state space learned (Q).

For example, in T-maze, $L^{\rm p}_{\infty}$ -distinguishability decreases exponentially with the corridor length N.

Contributions

A practical implementation of ADACT-H that reduces the memory and time complexity

• Exploit the Count-Min-Sketch (CMS) data structure to reduce the memory complexity of storing the empirical distributions on suffixes • Develop a novel language metric L_X , based on the theory of formal languages, and define a hierarchy of language families that removes the dependency on L^{p}_{∞} -distinguishability and is exponentially more sample efficient in domains having low complexity in language-theoretic terms

Figure: Impact of increasing the length of the corridor for the T-maze domain.

References

- [1] B. Bakker. Reinforcement learning with long short-term memory. In Neural Information Processing Systems (NeurIPS), pages 1475–1482, 2001.
- [2] R. Baumgartner and S. Verwer. Learning state machines from data streams: A generic strategy and an improved heuristic. In International Conference on Grammatical Inference (ICGI), pages 117–141, 2023.
- [3] R. Cipollone, A. Jonsson, A. Ronca, and M. S. Talebi. Provably efficient offline reinforcement learning in regular decision processes. In Neural Information Processing Systems (NeurIPS), 2023.