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Regular Decision Processes
Episodic Non-Markov Decision Process 〈O, A, R, T̄ , R̄, H〉, where T̄ :
(AO)∗ × A → ∆(O) and R̄ : (AO)∗ × A → R are functions of the en-
tire interaction history (AO)∗.
In a Regular Decision Process (RDP), the functions T̄ and R̄ depend regularly
on the interaction history, i.e., T̄ and R̄ can be represented by a Probabilistic-
Deterministic Finite Automaton (PDFA).
Example. T-maze [1] with corridor length N = 10 and noisy observations.

The observation at the initial position S indicates the position of the goal G at
the end of the corridor for the current episode.

Objective
Given a dataset D of episodes, collected from an unknown RDP R
and unknown behavior policy πb, compute a near-optimal policy for
R, using the smallest D possible.

Fact: A near-optimal policy can be computed from the PDFA of the RDP.
Question: Can we learn the PDFA of an RDP from an interaction history?

ADACT-H | State-of-the-art for PDFA Learning
AdaCT-H [3] computes the PDFA of the underlying RDP, and it enjoys
a polynomial sample complexity in the problem parameters. It builds the
graph of transitions, by comparing candidate states against the states already
discovered.
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AdaCT-H employs the prefix distance, defined as
Lp

∞(p1, p2) = max
u∈[0,`],e∈Eu

|p1(e ∗) − p2(e ∗)| .

The sample complexity depends inversely on the Lp
∞-distinguishability which

is the largest value µ0 such that for each p1 6= p2 on suffixes,
µ0 ≤ Lp

∞(p1, p2).

The main bottleneck of AdaCT-H is that Lp
∞-distinguishability tends to

be exceedingly small. In our running example, the T-maze domain, the Lp
∞-

distinguishability µ0 decreases exponentially with the corridor length N .

µ0 ≤ Lp
∞(p1, p2) ≤ pi(a1o1r1 a2o2r2 · · · aNoNrN) ≤ 2−N

Contribution
A practical implementation of AdaCT-H that reduces sample, memory, and
time complexity, by means of the following innovations.
• Exploiting the Count-Min-Sketch (CMS) data structure to reduce the

memory complexity of storing the empirical distributions on suffixes.
• A novel language metric LX , based on the theory of formal languages,

and a hierarchy of language families that remove the dependency on
Lp

∞-distinguishability and yields an exponentially more sample efficient
algorithm in domains having low complexity in language-theoretic terms.

Language Metrics
Language metrics for distributions over strings
For X a class of languages, the corresponding language metric is

LX (p1, p2) := max
X∈X

|p1(X) − p2(X)| where pi(X) :=
∑
x∈X

pi(x).

Language metrics for RL
Let Xi,j be a language family parameterized on two integers i and j

i ∈ J3K: the number of elements in A, O and R considered jointly
j ∈ JtK: the length of subsequences considered for comparison

Examples:
X1,1: single instance of one action, one observation or one reward
X3,2: subsequence of two instances of triplets in AOR

The language metric LX3,t
subsumes Lp

∞
Simple metrics suffice for simple domains. E.g., in the T-Maze,

µ0 ≥ LX3,1(p1, p2) ≥ pi(∗ North,Goal/1 ∗) = 1/2

Sample Complexity Analysis
Theorem 1. AdaCT-H(D, δ) returns the minimal RDP R with probability
at least 1 − 3AOUδ when CMS is used to store empirical probability estimates,
the statistical test is

Lp
∞(Z1, Z2) ≥

√
8 log(4(ARO)H−t/δ)/ min(|Z1|, |Z2|),

and the dataset size is |D| ≥ Õ
(

HC∗
R log(1/δ)
d∗

m·µ2
0

)
, with d∗

m = mint,utao d∗
t (ut, ao)

the minimum occupancy of the optimal policy π∗.

Theorem 2. AdaCT-H(D, δ) returns the minimal RDP R with probability
at least 1 − 2AOUδ when using the language metric LX to define a statistical
test

LX (Z1, Z2) ≥
√

2 log(2|X |/δ)/ min(|Z1|, |Z2|),

and the size of the dataset satisfies |D| ≥ Õ
(

C∗
R log(1/δ) log |X |

d∗
m·µ2

0

)
.

Experimental Evaluation
We provide an extensive evaluation showing that AdaCT-H equipped with
the language metric LX3,1 outperforms the state of the art.

FlexFringe CMS Language metric

Name H U r time U r time U r time

Corridor 5 11 1.0 0.03 11 1.0 0.3 11 1.0 0.01
T-maze(c) 5 29 0.0 0.11 104 4.0 10.1 18 4.0 0.26
Cookie 9 220 1.0 0.36 116 1.0 6.05 91 1.0 0.08
Cheese 6 669 0.69 ± .04 19.28 1158 0.4 ± .05 207.4 1178 0.87 ± .03 12.11
Mini-hall 15 897 0.33 ± .04 25.79 - - - 6098 0.86 ± .03 29.90

Quantities: H is the horizon, U is the number of states of the learned automaton, r is the
reward of the computed policy averaged over 100 episodes.

A clear exponential gain is observed in the figures below, reporting run-
time and number of states for increasing corridor length in the T-maze.
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