Offline RL in Regular Decision Processes: Sample Efficiency via Language Metrics

Ahana Deb¹ Roberto Cipollone² Anders Jonsson¹ Alessandro Ronca³ M. Sadegh Talebi⁴ ¹Universitat Pompeu Fabra ²Leonardo S.p.A. ³University of Oxford ⁴University of Copenhagen

Regular Decision Processes

Episodic Non-Markov Decision Process $\langle \mathcal{O}, \mathcal{A}, \mathcal{R}, \overline{T}, \overline{R}, H \rangle$, where \overline{T} : $(\mathcal{AO})^* \times \mathcal{A} \to \Delta(\mathcal{O})$ and $\overline{R} : (\mathcal{AO})^* \times \mathcal{A} \to \mathbb{R}$ are functions of the entire interaction history $(\mathcal{AO})^*$.

In a Regular Decision Process (RDP), the functions \overline{T} and \overline{R} depend regularly on the interaction history, i.e., T and R can be represented by a Probabilistic-

Language Metrics

Language metrics for distributions over strings For \mathcal{X} a class of languages, the corresponding *language metric* is $L_{\mathcal{X}}(p_1, p_2) \coloneqq \max_{X \in \mathcal{X}} |p_1(X) - p_2(X)|$ where $p_i(X) \coloneqq \sum_{X \in \mathcal{X}} p_i(x)$.

Language metrics for RL

Deterministic Finite Automaton (PDFA).

Example. T-maze [1] with corridor length N = 10 and noisy observations.

The observation at the initial position S indicates the position of the goal G at the end of the corridor for the current episode.

Objective

Given a dataset \mathcal{D} of episodes, collected from an unknown RDP **R** and unknown behavior policy π^b , compute a near-optimal policy for \mathbf{R} , using the smallest \mathcal{D} possible.

Fact: A near-optimal policy can be computed from the PDFA of the RDP. **Question**: Can we *learn* the PDFA of an RDP from an interaction history?

ADACT-H State-of-the-art for PDFA Learning

Let $\mathcal{X}_{i,j}$ be a language family parameterized on two integers i and j $i \in [3]$: the number of elements in \mathcal{A}, \mathcal{O} and \mathcal{R} considered jointly $j \in [t]$: the length of subsequences considered for comparison

Examples:

 $\mathcal{X}_{1,1}$: single instance of one action, one observation or one reward $\mathcal{X}_{3,2}$: subsequence of two instances of triplets in \mathcal{AOR}

The language metric $L_{\mathcal{X}_{3,t}}$ subsumes L_{∞}^{p}

Simple metrics suffice for simple domains. E.g., in the T-Maze,

 $\mu_0 \ge L_{\mathcal{X}_{31}}(p_1, p_2) \ge p_i(*North, Goal/1*) = 1/2$

Sample Complexity Analysis

Theorem 1. ADACT-H(\mathcal{D}, δ) returns the minimal RDP **R** with probability at least $1 - 3AOU\delta$ when CMS is used to store empirical probability estimates, the statistical test is

 $L^{\mathsf{p}}_{\infty}(\mathcal{Z}_1, \mathcal{Z}_2) \ge \sqrt{8\log(4(ARO)^{H-t}/\delta)/\min(|\mathcal{Z}_1|, |\mathcal{Z}_2|)},$

and the dataset size is $|\mathcal{D}| \geq \widetilde{\mathcal{O}}\left(\frac{HC_{\mathbf{R}}^*\log(1/\delta)}{d_{\mathbf{m}}^*\cdot\mu_0^2}\right)$, with $d_{\mathbf{m}}^* = \min_{t,u_t ao} d_t^*(u_t, ao)$ the minimum occupancy of the optimal policy π^* .

Theorem 2. ADACT-H(\mathcal{D}, δ) returns the minimal RDP **R** with probability at least $1 - 2AOU\delta$ when using the language metric $L_{\mathcal{X}}$ to define a statistical test $L_{\mathcal{X}}(\mathcal{Z}_1, \mathcal{Z}_2) \ge \sqrt{2\log(2|\mathcal{X}|/\delta)} / \min(|\mathcal{Z}_1|, |\mathcal{Z}_2|),$ and the size of the dataset satisfies $|\mathcal{D}| \geq \widetilde{\mathcal{O}}\left(\frac{C_{\mathbf{R}}^* \log(1/\delta) \log |\mathcal{X}|}{d_{\mathsf{m}}^* \cdot \mu_0^2}\right)$.

ADACT-H [3] computes the PDFA of the underlying RDP, and it enjoys a *polynomial sample complexity* in the problem parameters. It builds the graph of transitions, by comparing candidate states against the states already discovered.

ADACT-H employs the *prefix distance*, defined as

 $L^{\mathbf{p}}_{\infty}(p_1, p_2) = \max_{u \in [0,\ell], e \in \mathcal{E}_u} |p_1(e^*) - p_2(e^*)|.$

The sample complexity depends inversely on the L_{∞}^{p} -distinguishability which is the largest value μ_0 such that for each $p_1 \neq p_2$ on suffixes,

 $\mu_0 \leq L^{\mathsf{p}}_{\infty}(p_1, p_2).$

The main bottleneck of ADACT-H is that L_{∞}^{p} -distinguishability tends to be exceedingly small. In our running example, the T-maze domain, the $L_{\infty}^{\rm p}$ distinguishability μ_0 decreases exponentially with the corridor length N.

$$\mu_0 \le L^{\mathsf{p}}_{\infty}(p_1, p_2) \le p_i(a_1 o_1 r_1 \ a_2 o_2 r_2 \cdots a_N o_N r_N) \le 2^{-N}$$

Experimental Evaluation

We provide an extensive evaluation showing that ADACT-H equipped with the language metric $L_{\mathcal{X}_{31}}$ outperforms the state of the art.

		FlexFringe			CMS			Language metric		
Name	Н	U	r	time	\overline{U}	r	time	\overline{U}	r	time
Corridor	5	11	1.0	0.03	11	1.0	0.3	11	1.0	0.01
T-maze(c)	5	29	0.0	0.11	104	4.0	10.1	18	4.0	0.26
Cookie	9	220	1.0	0.36	116	1.0	6.05	91	1.0	0.08
Cheese	6	669	$0.69 \pm .04$	19.28	1158	$0.4 \pm .05$	207.4	1178	$0.87 \pm .03$	12.11
Mini-hall	15	897	$0.33 \pm .04$	25.79	_	-	-	6098	$0.86\pm.03$	29.90

Quantities: H is the horizon, U is the number of states of the learned automaton, r is the reward of the computed policy averaged over 100 episodes.

A clear exponential gain is observed in the figures below, reporting runtime and number of states for increasing corridor length in the T-maze.

Contribution

A practical implementation of ADACT-H that reduces sample, memory, and time complexity, by means of the following innovations.

- Exploiting the **Count-Min-Sketch (CMS)** data structure to reduce the memory complexity of storing the empirical distributions on suffixes.
- A novel language metric $L_{\mathcal{X}}$, based on the theory of formal languages, and a **hierarchy of language families** that remove the dependency on L^{p}_{∞} -distinguishability and yields an exponentially more sample efficient algorithm in domains having low complexity in language-theoretic terms.

References

[1] B. Bakker. Reinforcement learning with long short-term memory. In NeurIPS, 2001. [2] R. Baumgartner and S. Verwer. Learning state machines from data streams. In ICGI, 2023. [3] R. Cipollone, A. Jonsson, A. Ronca, and M. S. Talebi. Provably efficient offline reinforcement learning in regular decision processes. In NeurIPS, 2023.

Alessandro Ronca Ahana Deb **Roberto Cipollone** M. Sadegh Talebi **Anders Jonsson** cipollone.rt@gmail.com alessandro@ronca.me sadegh.talebi@di.ku.dk ahana.deb@upf.edu anders.jonsson@upf.edu