
Ahana Deb¹, Roberto Cipollone², Anders Jonsson¹, Alessandro Ronca³, Mohammad Sadegh Talebi⁴

Offline Reinforcement Learning
in Regular Decision Processes
Sample Effi

¹ ² ³ ⁴

Contents
- Reinforcement Learning

- Markov and Non-Markov Decision Processes

- Learning RDPs

- Sample Complexity Bounds

- Limitations and Future directions

Reinforcement Learning

Agent Environment
Action

Perception +
Reward

Reinforcement Learning

Agent Environment
Current state ,
Action taken

st
at

Next state ,
Reward

st+1
rt+1

Reinforcement Learning

Agent Environment
Current state ,
Action taken

st
at

Reward: Scalar signal.
The agent’s goal is to
maximise this reward

Next state ,
Reward

st+1
rt+1

Reinforcement Learning

Agent Environment
Current state ,
Action taken

st
at

Reward: Scalar signal.
The agent’s goal is to
maximise this reward

Policy: Map from state to action,
Can be deterministic
stochastic

a = π(s)

π(a |s) = ℙ[At = a |St = s]

Next state ,
Reward

st+1
rt+1

Reinforcement Learning

Agent Environment
Current state ,
Action taken

st
at

Reward: Scalar signal.
The agent’s goal is to
maximise this reward

Policy: Map from state to action,
Can be deterministic
stochastic

a = π(s)

π(a |s) = ℙ[At = a |St = s]

Value Function: Tells the agent how good or bad a
particular state is.

vπ(s) = 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s]

Next state ,
Reward

st+1
rt+1

AlphaGo / AlphaZero

Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge

> What the agent “sees”: States of
the board
> Reward: At the end of the game,
+1 or -1
> Actions: Valid actions
>Training: Trains by self-play

Reinforcement Learning

The agent only gets a
reward at the very end!

+1

Reinforcement Learning

The agent only gets a
reward at the very end!

We do not know the effect of
an action taken here

+1

Reinforcement Learning

The agent only gets a
reward at the very end!

We do not know the effect of
an action taken here

+1

We CANNOT get i.i.d data from
the environment!

Reinforcement Learning

Code at https://github.com/ahanadeb/Flappy_birds

https://www.youtube.com/watch?v=YX_wISFwV4c
https://github.com/ahanadeb/Flappy_birds

Challenges of RL
- A lot of the RL approaches which work in real life, are often backed by
incomplete theoretical understanding
- A lot of exploration is required
- The agent needs to make a LOT of mistakes to learn

Challenges of RL
- A lot of the RL approaches which work in real life, are often backed by
incomplete theoretical understanding
- A lot of exploration is required
- The agent needs to make a LOT of mistakes to learn

Solution?
> Design sample efficient algorithms with strong theoretical guarantees!
> Offline or off-policy learning!

Offline learning
Constraints: During the learning process, the agent CANNOT interact with
the environment

Offline learning
Constraints: During the learning process, the agent CANNOT interact with
the environment

Goal: Learning an optimal policy!

Offline learning
Constraints: During the learning process, the agent CANNOT interact with
the environment

Goal: Learning an optimal policy!

Advantages:
> Efficient use of already available data!
> Allows efficient learning in environments where interaction with the
environment is risky or costly or simply not possible

Markov Decision Process

> Agent interacts with environment, with interaction sequence (,

 and are the state, action and reward at time-step)

 > In MDPS, the distributions on and are only dependent on and

S0, A0, R0, S1, A1, R1… St

At Rt t

Rt+1 St+1 St At

Figure from “Reinforcement Learning: An introduction”, Sutton and Barto[1]

Value of state V(s)

Vπ(s) = 𝔼{Rt |st = s} = 𝔼π{Σ∞
k=0γ

krt+k+1 |st = s}

= 𝔼π{rt+1 + Σ∞
k=0γ

krt+k+2 |st = s}

= Σaπ(s, a)Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γ𝔼π{Σ∞

k=0γ
krt+k+2 |st = s}

= Σaπ(s, a)Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γVπ(s′￼)

“Reinforcement Learning: An introduction”, Sutton and Barto

Markov Decision Process

Under policy π

Value of state V(s)

 []

 []

Vπ(s) = 𝔼{Rt |st = s} = 𝔼π{Σ∞
k=0γ

krt+k+1 |st = s}

= 𝔼π{rt+1 + Σ∞
k=0γ

krt+k+2 |st = s}

= Σaπ(s, a)Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γ𝔼π{Σ∞

k=0γ
krt+k+2 |st = s}

= Σaπ(s, a)Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γVπ(s′￼)

Markov Decision Process

Under policy π

“Reinforcement Learning: An introduction”, Sutton and Barto

Value of state V(s)

Markov Decision Process

Under policy π

Value of a state-action pair
Q(s, a)

 []Qπ(s, a) = Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γVπ(s′￼) []Vπ(s) = Σaπ(s, a)Σs′￼

ℙa
ss′￼

Ra
ss′￼

+ γVπ(s′￼)

“Reinforcement Learning: An introduction”, Sutton and Barto

Value of state V(s)

 []Vπ(s) = Σaπ(s, a)Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γVπ(s′￼)

Markov Decision Process

Under policy π

Value of a state-action pair
Q(s, a)

 []Qπ(s, a) = Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γVπ(s′￼)

Under optimal
policy π * []V*(s) = maxa∈A(s)Σs′￼

ℙa
ss′￼

Ra
ss′￼

+ γV*(s′￼) []Q*(s, a) = Σs′￼
ℙa

ss′￼
Ra

ss′￼
+ γmaxa′￼

Q*(s′￼, a′￼)

“Reinforcement Learning: An introduction”, Sutton and Barto

Non Markov Decision Process
> Non-Markovian Decision Processes exhibit explicit dependency on past
events.
> Agent interacts with environment to create traces of Actions,
Observations and Rewards:

a0o0r0a1o1r1…aHoHrH = ℰH

> Non-Markovian if doesn’t satisfy
 or .
> History: Defined as a sequence,
ot+1 ⊥ a0o0…ot−1at |ot, at+1 rt+1 ⊥ a0o0…ot−1at |ot, at+1

ht = a0o0…atot ∈ (AO)t+1 = ℋt

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

More POMDP domains http://www.pomdp.org/

 POMDPs: Agent operates under
partial observability: the state space is
hidden and mapped to an observation
space.

http://www.pomdp.org/

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

 POMDPs: Agent operates under
partial observability: the state space is
hidden and mapped to an observation
space.
Example:
- A robot with a malfunctioning sensor
- Partially occluded vision, ex: Mini-hall

domain[1] Mini-hall [1]

[1] Littman et al., 1997, Learning Policies for Partially Observable Environments: Scaling Up

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

 POMDPs: Agent operates under
partial observability: the state space is
hidden and mapped to an observation
space.
Example:
- A robot with a malfunctioning sensor
- Partially occluded vision, ex: Mini-hall

domain[1] Mini-hall [1]

[1] Papadimitriou and Tsitsiklis, 1987, The complexity of Markov decision Processes

However, POMDPs are often
intractable[1]!
Sub-problems of POMDPs-
>undercomplete POMDPs
>few-step reachability
>ergodicity
>few-step decodability
> weakly-revealing, etc

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

 RDPs or Regular Decision Processes:
> NMDP where the underlying dynamics can be represented by a Probabilistic
Deterministic Finite Automaton
> can capture complex temporal dependencies

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

 RDPs or Regular Decision Processes:
> NMDP where the underlying dynamics can be represented by a Probabilistic
Deterministic Finite Automaton
> can capture complex temporal dependencies
RDPs are essentially a subclass of POMDPs[1] where hidden states are
determined by the history of observation!

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn

> This has steered research effort towards tractable subclasses-

 RDPs or Regular Decision Processes:
> NMDP where the underlying dynamics can be represented by a Probabilistic
Deterministic Finite Automaton
> can capture complex temporal dependencies
RDPs are essentially a subclass of POMDPs[1] where hidden states are
determined by the history of observation!

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

> Learning the automaton
underlying an RDP amounts to learning a
representation of the histories!

> Now we can work with the associated MDP!

Regular Decision Process
> In Regular Decision Processes, the next observation and next reward depend regularly

on the history of the interaction (and not just the last observation and action).

ot+1 rt+1

[1] Bram Bakker, 2001 Reinforcement Learning with long short-term memory
[2] Alfredo Gabaldon, 2011, Non-markovian control in the situation calculus

[3] Oh et al. Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

S

G0o0

G1o1

ocorridor

+
T-maze[1]

Grid [2]

Minecraft multi-task environment [3]

Regular Decision Process
> A general non-Markov episodic decision process can be given as , with

horizon where and .

> We assume the tabular case.

> A policy here is a mapping from history to action, and we can define the

values as

⟨O, A, R, T̄, R̄, H⟩

H ∈ ℕ+ T̄ : ℋ × A → Δ(O) R̄ : ℋ × A → Δ(R)

π : ℋ → Δ(A)

Vπ
t (ht) = 𝔼[

H

∑
t+1

ri |ht, π]

Regular Decision Process
> A general non-Markov episodic decision process can be given as , with

horizon where and .

> We assume the tabular case.

> A policy here is a mapping from history to action, and we can define the

values as

⟨O, A, R, T̄, R̄, H⟩

H ∈ ℕ+ T̄ : ℋ × A → Δ(O) R̄ : ℋ × A → Δ(R)

π : ℋ → Δ(A)

Vπ
t (ht) = 𝔼[

H

∑
t+1

ri |ht, π]
> RDPs : In a regular decision process, and are regular functions.
> Regularity: A function is considered regular for finite if, for each

 the set is a regular language].

T̄ R̄
f : Σ* → Ω Ω

ω ∈ Ω f −1(ω)

Regular Decision Process

Formal Definition : RDP where,

> is the set of automaton states

> is the set of input symbol

> is the transition function

> and are the two output functions.

⟨Q, Σ, Ω, τ, θo, θr, q0⟩

Q

Σ = AO

τ : Q × AO → Q

θo : Q × A → Δ(O) θr : Q × A → Δ(R)

Regular Decision Process

Cannot be observed
by the agent!

Formal Definition : RDP where,

> is the set of automaton states

> is the set of input symbol

> is the transition function

> and are the two output functions.

⟨Q, Σ, Ω, τ, θo, θr, q0⟩

Q

Σ = AO

τ : Q × AO → Q

θo : Q × A → Δ(O) θr : Q × A → Δ(R)

Objective
> To learn minimal automata from data (episodes) from an RDP, since the number of histories is

exponential in the horizon.

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze

S

G0o0

G1o1

ocorridor

Objective

o0

o1

N

qo

q1,1

q1,2

q2,1

q2,2

qn,1

qn,2

qf

S
Corresponding abstraction

> To learn minimal automata from data (episodes) from an RDP, since the number of histories is

exponential in the horizon.

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze

S

G0o0

G1o1

ocorridor

Regular Policy
> A policy is a regular policy if, for an RDP R, for two histories , for

which , the policy over the histories are also the same, i.e., .

> Every RDP has a optimal policy that is also regular.

> We also have

where .

π h, h′￼ ∈ ℋ

τ̄(h) = τ̄(h′￼) π(h) = π(h′￼)

ℙ(et+1:H |ht, π) = ℙ(et+1:H |h′￼t, π)

ei:j = aioiri…ajojrj

Offline RL in RDPs
 > Problem Statement: Given a dataset of episodes collected from

unknown RDP R with behavioral policy , our goal is to compute near-optimal
policy for R, using the smallest , and find PAC sample complexity guarantees

on the bound on required number of episodes, .

D
πb

D
|D |

Offline RL in RDPs
 > Problem Statement: Given a dataset of episodes collected from

unknown RDP R with behavioral policy , our goal is to compute near-optimal
policy for R, using the smallest , and fi

D
πb

D
|D |

 > We propose a modification on Cipollone 2023[1], using Count-Min-
Sketch to improve space complexity

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

Offline RL in RDPs
 > Problem Statement: Given a dataset of episodes collected from

unknown RDP R with behavioral policy , our goal is to compute near-optimal
policy for R, using the smallest , and fi

D
πb

D
|D |

 > We propose a modification on Cipollone 2023[1], using Count-Min-
Sketch to improve space complexity

> A language based approach to remove the dependency on some
complicated distinguishability parameters

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

Offline RL in RDPs
 > Problem Statement: Given a dataset of episodes collected from

unknown RDP R with behavioral policy , our goal is to compute near-optimal
policy for R, using the smallest , and fi

D
πb

D
|D |

 > We propose a modification on Cipollone 2023[1], using Count-Min-
Sketch to improve space complexity

> A language based approach to remove the dependency on some
complicated distinguishability parameters

> Respective bounds on sample complexity for offline RL in RDPs.

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

ADACT-H
> We assume a fixed horizon setting,

and an end symbol after transitions.

> Goal is to build a set of states

 and

 for any .

H

Q = Qo ⊔ Q1 ⊔ …QH+1

τ(qt) ∈ Qt+1 q ∈ Qt

qo

…

qH+1

Q0 Q1 QH QH+1

ADACT-H
> The set of states is built by time-steps.

> At iteration 3, we have safe states

, and candidate states

.

> TestDistinct compares estimates of the

suffixes, i.e. and

.

Q3 = {q3,1}

Qc,3 = {q2,1ao, q2,2ao′￼}

ℙ̂(e4:H |q3,1, πb)

ℙ̂(e4:H |q2,1ao, πb)

q1,1

q1,2

q2,1

q2,2

ao

q2,1ao

q3,1

q2,2ao′￼

ao′￼

t = 1 t = 2 t = 3

TestDistinct!

qo

ADACT-H
> If TestDistinct returns TRUE, is

promoted as a new state.

> Candidate state is tested against

the safe states at .

> Now we have to compare

with and , and so on

q2,1ao

q2,2ao′￼

t = 3

ℙ̂(e4:H |q2,2ao′￼, πb)

ℙ̂(e4:H |q3,1, πb) ℙ̂(e4:H |q2,1ao, πb)

q1,1

q1,2

q2,1

q2,2

ao

q2,1ao

q3,1

q2,2ao′￼

ao′￼

t = 1 t = 2 t = 3

TestDistinct!

qo

ADACT-H

State Similarity

> Two dissimilar states and must satisfy .q q′￼ pq ≠ pq′￼

State Similarity

> In ADACT-H, the metric used is the metric, which is defined as,

 or more accurately .

where and and .

Lp
∞

Lp
∞(p1, p2) = max |p1(e*) − p2(e*) | Lp

∞(̂p1, ̂p2) = max | ̂p1(e*) − ̂p2(e*) |

̂pi(e) = ∑
x∈𝒳q

𝕀(x = e)/ |𝒳q | 𝒳qt
= {et:H |e0:t−1et:H ∈ D τ̄(ht−1) = qt}

> Two dissimilar states and must satisfy .q q′￼ pq ≠ pq′￼

State Similarity
> In ADACT-H, the metric used is the metric, which is defined as,

 or more accurately .

where and and .

Lp
∞

Lp
∞(p1, p2) = max |p1(e*) − p2(e*) | Lp

∞(̂p1, ̂p2) = max | ̂p1(e*) − ̂p2(e*) |

̂pi(e) = ∑
x∈𝒳q

𝕀(x = e)/ |𝒳q | 𝒳qt
= {et:H |e0:t−1et:H ∈ D τ̄(ht−1) = qt}

Distinguishibility Assumption

For any two distinct states and suffix , for an RDP R, the -distinguishability must

be greater than , i.e.,

q, q′￼ ∈ Qt et:H Lp
∞

μ0 ≥ 0

Lp
∞(pq(et:H), pq′￼

(et:H)) ≥ μ0

State Similarity
> Occupancy: Occupancy of state-action-observation pair under policy

,

qt, atot π

dπ
t (qt, atot) = Σ(q,ao)∈τ−1(qt)d

π
t−1(q, ao) ⋅ π(at |qt) ⋅ θ0(ot |qt, at) t > 0

State Similarity
> Occupancy: Occupancy of state-action-observation pair under policy

,

qt, atot π

dπ
t (qt, atot) = Σ(q,ao)∈τ−1(qt)d

π
t−1(q, ao) ⋅ π(at |qt) ⋅ θ0(ot |qt, at) t > 0

> Single Policy RDP concentrability coefficient

> We define the single-policy RDP concentrability coefficient of RDP R with behavorial policy

as

πb

C*R =
t ∈ H, q ∈ Qt, ao ∈ AO

max d*t (q, ao)
db

t (q, ao)

Property: let be the RDP coefficient for R and and be the concentrability coefficient for

and , then .

CR * D2 C * MR

D′￼2 CR * = C *

Count-Min-Sketch
> Count-Min-Sketch can store

 and allows point

queries, which returns an estimate .

> For , Cormode and

Muthukrishnan (2005) shows that

with probability at least ,

..

v = [v1, . . . , vm]

vi

δ, ϵ

1 − δ

ṽi ≤ vi + ϵ | |v | |

Updating the CMS[1] with rows

 and columns.

d = log[1/δ]
w = [e/ϵ]

[1] Cormode and Muthukrishnan (2005) , An improved data stream summary: the count-min sketch and its applications

Languages
>So far we do not take advantage of the internal structure of the suffix distributions.

> We define some basic patterns -

Languages

> For and , the operator maps any set of languages to a new set of languages as follows:l ∈ ℕ k ∈ [l] Cℓ
k

>So far we do not take advantage of the internal structure of the suffix distributions.

> We define some basic patterns -

Languages

> We can define a 2-dimensional hierarchy of sets of languages,

> We define the respective language metric as

where the probability of a language is

Language in noisy T-maze
> chooses East in the corridor and

North and South at the junction with

equal probability.

πb

S

G0o0

G1o1

ocorridor or onoise

qo

q1,1

q1,2

q2,1

q2,2

qn,1

qn,2

qf

Noisy T-maze, with equal probability of observing
 or in the corridorocorridor onoise

Language in noisy T-maze
> chooses East in the corridor and

North and South at the junction with

equal probability.

> Since the distance between states is

determined by the probability of single

episode suffixes, -distinguishability

decreases exponentially with the corridor

length N.

πb

Lp
∞

S

G0o0

G1o1

ocorridor or onoise

qo

q1,1

q1,2

q2,1

q2,2

qn,1

qn,2

qf

Noisy T-maze, with equal probability of observing
 or in the corridorocorridor onoise

Language in noisy T-maze
> chooses East in the corridor and

North and South at the junction with
equal probability.
> Since the distance between states is
determined by the probability of single

episode suffixes, -distinguishability

decreases exponentially with the corridor
length N.

> However, -distinguishability will be

constant and independent of N.

πb

Lp
∞

L

S

G0o0

G1o1

ocorridor or onoise

qo

q1,1

q1,2

q2,1

q2,2

qn,1

qn,2

qf

Noisy T-maze, with equal probability of observing
 or in the corridorocorridor onoise

Experimental Results
>For each domain, H is the horizon, and for each algorithm, is the number of states of the learnt automaton, is the

reward of the derived policy, averaged over 100 episodes, and time is the running time in seconds of automaton

learning. The maximum reward for all the domains is 1, except for T-maze where the reward upon reaching the goal is 4.

Q r

Experimental Results

a) Time taken (secs) vs length of corridor b) Number of RDP states vs length of corridor

> Comparing for noisy T-maze where the observations in the corridor can be or with equal

probability

ocorridor onoise

Sample Complexity Upper Bounds
> Theorem 2: ADACT-H() returns the minimal RDP R with probability at least

when CMS is used to store empirical probability estimates, with the statistical test:

And the size of the dataset is at least (), where

, and is the -distinguishability.

D, δ 1 − 3AOQδ

Lp
∞(Z1, Z2) ≥ 8log(4(ARO)H−t /δ)/min(|Z1 |), |Z2 |)

D |D | ≥ Õ
HC*Rlog(1/δ)

d*mμ2
0

d*min := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 Lp
∞

Sample Complexity Upper Bounds
> Theorem 2: ADACT-H() returns the minimal RDP R with probability at least

when CMS is used to store empirical probability estimates, with the statistical test:

And the size of the dataset is at least (), where

, and is the -distinguishability.

D, δ 1 − 3AOQδ

Lp
∞(Z1, Z2) ≥ 8log(4(ARO)H−t /δ)/min(|Z1 |), |Z2 |)

D |D | ≥ Õ
HC*Rlog(1/δ)

d*mμ2
0

d*min := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 Lp
∞

-distinguishabilityLp
∞

Min occupancy

Sample Complexity Upper Bounds
> Theorem 3: ADACT-H() returns the minimal RDP R with probability at least

when using language metric to define a statistical test:

And the size of the dataset is at least (),

where , and is the -distinguishability.

D, δ 1 − 2AOQδ

L𝒳

L𝒳(Z1, Z2) ≥ 2log(4 |𝒳 | /δ)/min(|Z1 |), |Z2 |)

D |D | ≥ Õ
C*Rlog(1/δ)log |𝒳 |

d*mμ2
0

dmin := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 L𝒳

Sample Complexity Upper Bounds
> Theorem 3: ADACT-H() returns the minimal RDP R with probability at least

when using language metric to define a statistical test:

And the size of the dataset is at least (),

where , and is the -distinguishability.

D, δ 1 − 2AOQδ

L𝒳

L𝒳(Z1, Z2) ≥ 2log(4 |𝒳 | /δ)/min(|Z1 |), |Z2 |)

D |D | ≥ Õ
C*Rlog(1/δ)log |𝒳 |

d*mμ2
0

dmin := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 L𝒳

-distinguishabilityL𝒳

Proof Structure

Proof Structure

Proof Structure

Minimum cardinality

Related works

Slide from Roberto Cipollone

> Abadi and Brafman (2020)

> Ronca and De Giacomo (2021), Ronca, Licks et al. (2022)

> ADACT (Balle et al), online algorithm, if applied directly gives bound

> Toto Icarte et al. (2019)

> Mahmud (2010)

> POMDP algorithms

> Predicitive State Representations (PSRs) and generic NMDP algorithms (Hutter 2009, Lattimore et al. 2013)

ADACT-H-A

Proof Sketch for ADACT-H-A
> A state is only learned if it is frequent, i.e.

> For all frequent states, the proof follows as before

>For the other states, we bound with Bernstein’s

>With high probability, the maximum loss for infrequent states is .

|Z(qao) |
N

≥
3ϵ

10Q̄AOHC̄

db
t (qao)

ϵ/2

Conclusions
> We propose two new approaches to offline RL for Regular Decision Processes and

provide their respective theoretical analysis.

Conclusions
> We propose two new approaches to offline RL for Regular Decision Processes and

provide their respective theoretical analysis.

> We also improve upon existing algorithms for RDP learning, and propose a

modified algorithm using Count-Min-Sketch with reduced memory complexity.

Conclusions
> We propose two new approaches to offline RL for Regular Decision Processes and
provide their respective theoretical analysis.
> We also improve upon existing algorithms for RDP learning, and propose a
modified algorithm using Count-Min-Sketch with reduced memory complexity.
>We define a hierarchy of language families and introduce a language-based approach,

removing the dependency on -distinguishability parameters, and compare and

evaluate the performance of our algorithms.

Lp
∞

Conclusions
> We propose two new approaches to offline RL for Regular Decision Processes and
provide their respective theoretical analysis.
> We also improve upon existing algorithms for RDP learning, and propose a
modified algorithm using Count-Min-Sketch with reduced memory complexity.
>We define a hierarchy of language families and introduce a language-based approach,

removing the dependency on -distinguishability parameters, and compare and

evaluate the performance of our algorithms.
> Finally as a future work, we plan to expand to the online setting!

Lp
∞

Limitations and Open Questions
> We learn acyclic abstractions, which is not
useful in a lot of cases - example: Cheese-
maze[1]

Cheese-maze

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

Limitations and Open Questions
> We learn acyclic abstractions, which is not

useful in a lot of cases - example: Cheese-

maze[1]

> We still use a uniform policy in our data

gathering phase.

πb

Cheese-maze

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

Limitations and Open Questions
> We learn acyclic abstractions, which is not

useful in a lot of cases - example: Cheese-

maze[1]

> We still use a uniform policy in our data

gathering phase.

> Future direction: Extending to the online

setting

πb

Cheese-maze

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

Thank you!

Check out our paper here!

