Offline Reinforcement Learning in Regular Decision Processes

Ahana Deb¹, Roberto Cipollone², Anders Jonsson¹, Alessandro Ronca³, Mohammad Sadegh Talebi⁴

Universitat Pompeu Fabra *Barcelona*

university of **OXFORD**

UNIVERSITY OF Copenhagen

Contents

- Reinforcement Learning
- Markov and Non-Markov Decision Processes
- Learning RDPs
- Sample Complexity Bounds
- Limitations and Future directions

Environment

Environment

Environment

Policy: Map from state to action, Can be deterministic $a = \pi(s)$ stochastic $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$

Policy: Map from state to action, Can be deterministic $a = \pi(s)$ stochastic $\pi(a \mid s) = \mathbb{P}[A_t = a \mid S_t = s]$

Value Function: Tells the agent how good or bad a particular state is. $v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s]$

AlphaGo / AlphaZero

Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge

- > What the agent "sees": States of the board
- > Reward: At the end of the game,
- +1 or -1
- > Actions: Valid actions
- >Training: Trains by self-play

The agent only gets a reward at the very end!

We do not know the effect of an action taken here

The agent only gets a reward at the very end!

We do not know the effect of an action taken here

We CANNOT get i.i.d data from the environment!

Code at https://github.com/ahanadeb/Flappy_birds

Challenges of RL

- incomplete theoretical understanding
- A lot of exploration is required
- The agent needs to make a LOT of mistakes to learn

- A lot of the RL approaches which work in real life, are often backed by

Challenges of RL

- incomplete theoretical understanding
- A lot of exploration is required
- The agent needs to make a LOT of mistakes to learn

Solution?

Design sample efficient algorithms with strong theoretical guarantees! Offline or off-policy learning!

- A lot of the RL approaches which work in real life, are often backed by

Offline learning

Constraints: During the learning pro the environment

Constraints: During the learning process, the agent CANNOT interact with

Offline learning

Constraints: During the learning pro the environment

Goal: Learning an optimal policy!

Constraints: During the learning process, the agent CANNOT interact with

Offline learning

Constraints: During the learning pro the environment

Goal: Learning an optimal policy!

Advantages:

 > Efficient use of already available data!
 > Allows efficient learning in environments where interaction with the environment is risky or costly or simply not possible

Constraints: During the learning process, the agent CANNOT interact with

 A_t and R_t are the state, action and reward at time-step t) > In MDPS, the distributions on R_{t+1} and S_{t+1} are only dependent on S_t and A_t

Figure from "Reinforcement Learning: An introduction", Sutton and Barto[1]

> Agent interacts with environment, with interaction sequence $S_0, A_0, R_0, S_1, A_1, R_1, \dots$ (S_t ,

Value of state V(s)

Under policy π

$V^{\pi}(s) = \mathbb{E}\{R_t | s_t = s\} = \mathbb{E}_{\pi}\{\Sigma_{k=0}^{\infty}\gamma^k r_{t+k+1} | s_t = s\}$

Value of state V(s)

Under policy π

 $V^{\pi}(s) = \mathbb{E}\{R_t \mid s_t = s\}$

$$= \mathbb{E}_{\pi} \{ \Sigma_{k=0}^{\infty} \gamma^{k} r_{t+k+1} | s_{t} = s \}$$

$$= \mathbb{E}_{\pi} \{ r_{t+1} + \Sigma_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s \}$$

$$= \Sigma_{a} \pi(s, a) \Sigma_{s'} \mathbb{P}_{ss'}^{a} \left[R_{ss'}^{a} + \gamma \mathbb{E}_{\pi} \{ \Sigma_{k=0}^{\infty} \gamma^{k} r_{t+k+2} | s_{t} = s \} \right]$$

$$= \Sigma_{a} \pi(s, a) \Sigma_{s'} \mathbb{P}_{ss'}^{a} \left[R_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

Value of state V(s)

Under policy π

Value of state V(s)

Under policy π

Under optimal policy π^*

- events.
- > Agent interacts with environment to create traces of Actions, **Observations and Rewards:**

 $a_0 o_0 r_0 a_1 o_1 r$

> Non-Markovian if doesn't satisfy $o_{t+1} \perp a_0 o_0 \dots o_{t-1} a_t | o_t, a_{t+1} \text{ or } r_{t+1} \perp a_0 o_0$ > **History**: Defined as a sequence, $h_t = a_t$

> Non-Markovian Decision Processes exhibit explicit dependency on past

$$r_1 \dots a_H o_H r_H = \mathscr{C}_H$$

$$\dots o_{t-1}a_t \mid o_t, a_{t+1}.$$
$$a_0 o_0 \dots a_t o_t \in (AO)^{t+1} = \mathscr{H}^t$$

> The **unrestricted dynamics** of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

POMDPs: Agent operates under partial observability: the state space is hidden and mapped to an observation space.

More POMDP domains http://www.pomdp.org/

> The **unrestricted dynamics** of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

POMDPs: Agent operates under partial observability: the state space is hidden and mapped to an observation space.

Example:

A robot with a malfunctioning sensor Partially occluded vision, ex: Mini-hall domain[1]

[1] Littman et al., 1997, Learning Policies for Partially Observable Environments: Scaling Up

> The **unrestricted dynamics** of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

POMDPs: Agent operates under partial observability: the state space is hidden and mapped to an observation space.

Example:

A robot with a malfunctioning sensor Partially occluded vision, ex: Mini-hall domain[1]

However, POMDPs are often intractable[1]! Sub-problems of POMDPs->undercomplete POMDPs >few-step reachability >ergodicity >few-step decodability > weakly-revealing, etc

[1] Papadimitriou and Tsitsiklis, 1987, The complexity of Markov decision Processes

NNDPs

> The unrestricted dynamics of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

RDPs or Regular Decision Processes: > NMDP where the underlying dynamics can be represented by a Probabilistic **Deterministic Finite Automaton** can capture complex temporal dependencies >

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

NNDPs

> The **unrestricted dynamics** of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

RDPs or Regular Decision Processes: > NMDP where the underlying dynamics can be represented by a Probabilistic Deterministic Finite Automaton can capture complex temporal dependencies RDPs are essentially a subclass of POMDPs[1] where hidden states are determined by the history of observation!

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

> The unrestricted dynamics of NMDPs make them intractactable to learn > This has steered research effort towards **tractable subclasses**-

RDPs or Regular Decision Processes: > NMDP where the underlying dynamics can be rep **Deterministic Finite Automaton** can capture complex temporal dependencies RDPs are essentially a subclass of POMDPs[1] whrepresentation of the histories! determined by the history of observation!

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

on the history of the interaction (and not just the last observation and action).

> In Regular Decision Processes, the next observation o_{t+1} and next reward r_{t+1} depend regularly

Minecraft multi-task environment [3]

Grid [2]

[1] Bram Bakker, 2001 Reinforcement Learning with long short-term memory [2] Alfredo Gabaldon, 2011, Non-markovian control in the situation calculus [3] Oh et al. Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning

- > A general non-Markov episodic decision process can be given as $\langle O, A, R, \overline{T}, \overline{R}, H \rangle$, with horizon $H \in \mathbb{N}_+$ where $\overline{T} : \mathscr{H} \times A \to \Delta(O)$ and $\overline{R} : \mathscr{H} \times A \to \Delta(R)$. > We assume the tabular case. > A policy here is a mapping from history to action, $\pi : \mathscr{H} \to \Delta(A)$ and we can define the values as
 - $V_t^{\pi}(h_t) =$

$$= \mathbb{E}\left[\sum_{t+1}^{H} r_i \,|\, h_t, \pi\right]$$

> A general non-Markov episodic decision process can be given as $\langle O, A, R, \overline{T}, \overline{R}, H \rangle$, with horizon $H \in \mathbb{N}_+$ where $T : \mathcal{H} \times A \to \Delta(O)$ and $R : \mathcal{H} \times A \to \Delta(R)$.

> We assume the tabular case.

> A policy here is a mapping from history to action, $\pi: \mathscr{H} \to \Delta(A)$ and we can define the

- **Formal Definition : RDP** $\langle Q, \Sigma, \Omega, \tau, \theta_o, \theta_r, q_0 \rangle$ where,
- > Q is the set of automaton states
- $> \Sigma = AO$ is the set of input symbol
- $> \tau: Q \times AO \rightarrow Q$ is the transition function
- $> \theta_o: Q \times A \to \Delta(O)$ and $\theta_r: Q \times A \to \Delta(R)$ are the two output functions.

- **Formal Definition : RDP** $\langle Q, \Sigma, \Omega, \tau, \theta_o, \theta_r, q_0 \rangle$ where,
- > Q is the set of automaton states
- $> \Sigma = AO$ is the set of input symbol
- $> \tau: Q \times AO \rightarrow Q$ is the transition function
- $> \theta_o: Q \times A \to \Delta(O)$ and $\theta_r: Q \times A \to \Delta(R)$ are the two output functions.

Objective

> To learn minimal automata from data (episodes) from an RDP, since the number of histories is exponential in the horizon.

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze

Objective

> To learn minimal automata from data (episodes) from an RDP, since the number of histories is exponential in the horizon.

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze

Corresponding abstraction
Regular Policy

> Every RDP has a optimal policy that is also regular. > We also have

 $\mathbb{P}(e_{t+1:H} | h_t, \pi) = \mathbb{P}(e_{t+1:H} | h'_t, \pi)$ where $e_{i:i} = a_i o_i r_i \dots a_j o_j r_j$.

> A policy π is a **regular policy** if, for an RDP R, for two histories $h, h' \in \mathcal{H}$, for which $\overline{\tau}(h) = \overline{\tau}(h')$, the policy over the histories are also the same, i.e., $\pi(h) = \pi(h')$.

> Problem Statement: Given a dataset D of episodes collected from unknown RDP R with behavioral policy π^b , our goal is to compute near-optimal policy for R, using the smallest D, and find PAC sample complexity guarantees on the bound on required number of episodes, |D|.

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

> We propose a modification on Cipollone 2023[1], using Count-Min-Sketch to improve space complexity

> We propose a modification on Cipollone 2023[1], using Count-Min-Sketch to improve space complexity > A language based approach to remove the dependency on some complicated distinguishability parameters

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

> We propose a modification on Cipollone 2023[1], using Count-Min-Sketch to improve space complexity > A language based approach to remove the dependency on some complicated distinguishability parameters > Respective bounds on sample complexity for offline RL in RDPs.

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023

ADACT-H

> We assume a fixed horizon setting, and an end symbol after *H* transitions.

> Goal is to build a set of states $Q = Q_o \sqcup Q_1 \sqcup \dots Q_{H+1}$ and $\tau(q_t) \in Q_{t+1}$ for any $q \in Q_t$.

. . .

ADACT-H

> The set of states is built by time-steps.

> At iteration 3, we have safe states $Q_3 = \{q_{3,1}\}$, and candidate states $Q_{c,3} = \{q_{2,1}ao, q_{2,2}ao'\}$.

> TestDistinct compares estimates of the suffixes, i.e. $\hat{\mathbb{P}}(e_{4:H} | q_{3,1}, \pi^b)$ and $\hat{\mathbb{P}}(e_{4:H} | q_{2,1}ao, \pi^b)$.

> If **TestDistinct** returns **TRUE**, $q_{2,1}ao$ is **promoted** as a new state.

> Candidate state $q_{2,2}ao'$ is tested against the safe states at t = 3.

> Now we have to compare $\hat{\mathbb{P}}(e_{4:H}|q_{2,2}ao',\pi^b)$ with $\hat{\mathbb{P}}(e_{4:H}|q_{3,1},\pi^b)$ and $\hat{\mathbb{P}}(e_{4:H}|q_{2,1}ao,\pi^b)$, and so on

ADACT-H

Input: Dataset \mathcal{D} containing N traces in \mathcal{E}_H , failure probability $0 < \delta < 1$ **Output:** Set \mathcal{Q} of RDP states, transition function $\tau : \mathcal{Q} \times \mathcal{AO} \to \mathcal{Q}$ 1 $\mathcal{Q}_0 \leftarrow \{q_0\}, \mathcal{X}(q_0) \leftarrow \mathcal{D}$ initial state **2** for t = 0, ..., H do $\mathcal{Q}_{\mathsf{c},t+1} \leftarrow \{qao \mid q \in \mathcal{Q}_t, ao \in \mathcal{AO}\}$ 3 // get candidate states foreach $qao \in \mathcal{Q}_{c,t+1}$ do $\mathcal{X}(qao) \leftarrow \{e_{t+1:H} \mid aroe_{t+1:H} \in \mathcal{X}(q)\}$ // compute suffixes 4 // most common candidate $q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}} \leftarrow \arg\max_{qao \in \mathcal{Q}_{\mathsf{c},t+1}} |\mathcal{X}(qao)|$ 5 $\mathcal{Q}_{t+1} \leftarrow \{q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}\}, \tau(q_{\mathsf{m}}, a_{\mathsf{m}}o_{\mathsf{m}}) = q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}$ // promote candidate 6 $\mathcal{Q}_{\mathsf{c},t+1} \leftarrow \mathcal{Q}_{\mathsf{c},t+1} \setminus \{q_{\mathsf{m}}a_{\mathsf{m}}o_{\mathsf{m}}\}$ // remove from candidate states 7 for $qao \in \mathcal{Q}_{\mathsf{c},t+1}$ do 8 Similar $\leftarrow \{q' \in Q_{t+1} \mid \text{not TESTDISTINCT}(t, \mathcal{X}(qao), \mathcal{X}(q'), \delta)\}$ // confidence test 9 if Similar = \emptyset then $Q_{t+1} \leftarrow Q_{t+1} \cup \{qao\}, \tau(q, ao) = qao$ // promote candidate 10 else $q' \leftarrow$ element in Similar, $\tau(q, ao) = q', \mathcal{X}(q') \leftarrow \mathcal{X}(qao)$ // merge states 11 end 12 13 end 14 return $Q_0 \cup \cdots \cup Q_{H+1}, \tau$ 15 Function TESTDISTINCT(t, X_1, X_2, δ) return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \geq \sqrt{2\log(8(ARO)^{H-t}/\delta)/\min(|\mathcal{X}_1|, |\mathcal{X}_2|)}$ 16

- **1** FUNCTION(TESTDISTINCT) **Input:** Time t, multisets X_1 and X_2 of traces, failure probability $0 < \delta < 1$ **Output:** True if \mathcal{X}_1 and \mathcal{X}_2 are regarded as distinct, False otherwise
- return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \ge \sqrt{2\log(8(ARO)^{H-t}/\delta)/\max(|\mathcal{X}_1|, |\mathcal{X}_2|)}$ 2
- > Two dissimilar states q and q' must satisfy $p_q \neq p_{q'}$.

1 FUNCTION(TESTDISTINCT) **Input:** Time t, multisets \mathcal{X}_1 and \mathcal{X}_2 of traces, failure probability $0 < \delta < 1$ **Output:** True if \mathcal{X}_1 and \mathcal{X}_2 are regarded as distinct, False otherwise

return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \geq \sqrt{2\log(8(ARO)^{H-t}/\delta)/\max(|\mathcal{X}_1|, |\mathcal{X}_2|)}$ 2

> Two dissimilar states q and q' must satisfy $p_a \neq p_{a'}$.

> In ADACT-H, the metric used is the L^p_{∞} metric, which is defined as, $L^p_{\infty}(p_1, p_2) = max |p_1(e^*) - p_2(e^*)|$ or more accurately $L^p_{\infty}(\hat{p}_1, \hat{p}_2) = max |\hat{p}_1(e^*) - \hat{p}_2(e^*)|$. where $\hat{p}_i(e) = \sum ||(x = e)/|\mathcal{X}_q|$ and $\mathcal{X}_{q_t} = \{e_{t:H} | e_{0:t-1}e_{t:H} \in D \text{ and } \bar{\tau}(h_{t-1}) = q_t\}.$ $x \in \mathcal{X}_q$

> In ADACT-H, the metric used is the L^p_{∞} metric, which is defined as, $L^p_{\infty}(p_1, p_2) = max |p_1(e^*) - p_2(e^*)|$ or more accurately $L^p_{\infty}(\hat{p}_1, \hat{p}_2) = max |\hat{p}_1(e^*) - \hat{p}_2(e^*)|$. where $\hat{p}_i(e) = \sum \|(x = e)/\|\mathcal{X}_q\|$ and $\mathcal{X}_{q_t} = \{e_{t:H} | e_{0:t-1}e_{t:H} \in D \text{ and } \bar{\tau}(h_{t-1}) = q_t\}.$ $x \in \mathcal{X}_a$

Distinguishibility Assumption

For any two distinct states $q, q' \in Q_t$ and suffix $e_{t:H}$, for an RDP R, the L^p_{∞} -distinguishability must

be greater than $\mu_0 \ge 0$, i.e.,

 $L^{p}_{\infty}(p_{q}(e_{t:H}), p_{q'}(e_{t:H})) \ge \mu_{0}$

> Occupancy: Occupancy of state-action-observation pair q_t , $a_t o_t$ under policy π

$$d_t^{\pi}(q_t, a_t o_t) = \sum_{(q,ao) \in \tau^{-1}(q_t)} d_{t-1}^{\pi}$$

 $q_{1}(q, ao) \cdot \pi(a_{t} | q_{t}) \cdot \theta_{0}(o_{t} | q_{t}, a_{t}), t > 0$

> Occupancy: Occupancy of state-action-observation pair q_t , $a_t o_t$ under policy π

$$d_t^{\pi}(q_t, a_t o_t) = \sum_{(q,ao) \in \tau^{-1}(q_t)} d_{t-1}^{\pi}(q, ao) \cdot \pi(a_t | q_t) \cdot \theta_0(o_t | q_t, a_t), t > 0$$

> Single Policy RDP concentrability coefficient > We define the single-policy RDP concentrability coefficient of RDP R with behavorial policy π^b $C_R^* = \max_{t \in H, q \in Q_t, ao \in AO} \frac{d_t^*(q, ao)}{d_t^b(q, ao)}$ as

and D'_2 , then $C_R * = C *$.

Property: let C_R * be the RDP coefficient for **R** and D_2 and C * be the concentrability coefficient for M_R

Count-Min-Sketch

- > Count-Min-Sketch can store $v = [v_1, \ldots, v_m]$ and allows point queries, which returns an estimate v_i .
- > For δ, ϵ , Cormode and Muthukrishnan (2005) shows that with probability at least $1 - \delta$, $\tilde{v}_i \leq v_i + \epsilon ||v|| \dots$

[1] Cormode and Muthukrishnan (2005), An improved data stream summary: the count-min sketch and its applications

Updating the CMS[1] with $d = log[1/\delta]$ rows and $w = [e/\epsilon]$ columns.

Languages

So far we do not take advantage of theWe define some basic patterns -

$$\begin{split} \mathcal{G}_1 &= \left\{ a\mathcal{O}/\mathcal{R} \mid a \in \mathcal{A} \right\} \cup \left\{ \mathcal{A}\mathcal{O}/r \mid r \in \mathcal{R} \right\} \cup \left\{ \mathcal{A}o/\mathcal{R} \mid o \in \mathcal{O} \right\}, \\ \mathcal{G}_2 &= \mathcal{G}_1 \cup \left\{ ao/\mathcal{R} \mid a \in \mathcal{A}, o \in \mathcal{O} \right\} \cup \left\{ a\mathcal{O}/r \mid a \in \mathcal{A}, r \in \mathcal{R} \right\} \cup \left\{ \mathcal{A}o/r \mid a \in \mathcal{A}, r \in \mathcal{R} \right\}, \\ \mathcal{G}_3 &= \mathcal{G}_2 \cup \left\{ ao/r \mid a \in \mathcal{A}, o \in \mathcal{O}, r \in \mathcal{R} \right\}. \end{split}$$

>So far we do not take advantage of the internal structure of the suffix distributions.

Languages

>So far we do not take advantage of the
> We define some basic patterns -

$$\begin{split} \mathcal{G}_1 &= \left\{ a\mathcal{O}/\mathcal{R} \mid a \in \mathcal{A} \right\} \cup \left\{ \mathcal{A}\mathcal{O}/r \mid r \in \mathcal{R} \right\} \cup \left\{ \mathcal{A}o/\mathcal{R} \mid o \in \mathcal{O} \right\}, \\ \mathcal{G}_2 &= \mathcal{G}_1 \cup \left\{ ao/\mathcal{R} \mid a \in \mathcal{A}, o \in \mathcal{O} \right\} \cup \left\{ a\mathcal{O}/r \mid a \in \mathcal{A}, r \in \mathcal{R} \right\} \cup \left\{ \mathcal{A}o/r \mid a \in \mathcal{A}, r \in \mathcal{R} \right\}, \\ \mathcal{G}_3 &= \mathcal{G}_2 \cup \left\{ ao/r \mid a \in \mathcal{A}, o \in \mathcal{O}, r \in \mathcal{R} \right\}. \end{split}$$

> For $l \in \mathbb{N}$ and $k \in [l]$, the operator C_k^{ℓ} maps any set of languages to a new set of languages as follows:

 $\mathcal{C}_k^\ell(\mathcal{G}) = \{ \{ x_0 G_1 \cdots x_{k-1} G_k x_k \mid x_0, \dots, x_k \} \}$

>So far we do not take advantage of the internal structure of the suffix distributions.

$$x_k \in \Gamma^*, |x_0 \cdots x_k| = (\ell - k)\} | G_1, \dots, G_k \in \Omega$$

Languages

> We can define a 2-dimensional hierarchy of sets of languages, $\mathcal{X}_{i,j} = \bigcup_{k \in \llbracket j \rrbracket} \mathcal{C}_k^{\ell}(\mathcal{G}_i), \qquad \forall i \in \llbracket 3 \rrbracket, \ \forall j \in \llbracket \ell \rrbracket.$

> We define the respective **language metric** as

where the probability of a language is

 $L_{\mathcal{X}}(p, p') \coloneqq \max_{X \in \mathcal{X}} |p(X) - p'(X)|$

 $p(X) \coloneqq \sum_{x \in X} p(x)$

Language in noisy T-maze

> π^b chooses *East* in the corridor and North and South at the junction with equal probability.

Noisy T-maze, with equal probability of observing $o_{corridor}$ or o_{noise} in the corridor

Language in noisy T-maze

> π^{b} chooses East in the corridor and North and South at the junction with equal probability.

> Since the distance between states is determined by the probability of single episode suffixes, L^p_{∞} -distinguishability decreases exponentially with the corridor length N.

Noisy T-maze, with equal probability of observing $o_{corridor}$ or o_{noise} in the corridor

Language in noisy T-maze

> π^{b} chooses East in the corridor and North and South at the junction with equal probability.

> Since the distance between states is determined by the probability of single episode suffixes, L^p_{∞} -distinguishability decreases exponentially with the corridor length N.

> However, $L_{\chi_{2,1}}$ -distinguishability will be constant and independent of N.

Noisy T-maze, with equal probability of observing $o_{corridor}$ or o_{noise} in the corridor

Experimental Results

>For each domain, H is the horizon, and for each algorithm, *Q* is the number of states of the learnt automaton, *r* is the reward of the derived policy, averaged over 100 episodes, and time is the running time in seconds of automaton learning. The maximum reward for all the domains is 1, except for T-maze where the reward upon reaching the goal is 4.

		FlexFringe			CMS			Language metric		
Name	H	\overline{Q}	r	time	\overline{Q}	r	time	\overline{Q}	r	time
Corridor	5	11	1.0	0.03	11	1.0	0.3	11	1.0	0.01
T-maze(c)	5	29	0.0	0.11	104	4.0	10.1	18	4.0	0.26
Cookie	9	220	1.0	0.36	116	1.0	6.05	91	1.0	0.08
Cheese	6	669	$0.69 \pm .04$	19.28	1158	$0.4\pm.05$	207.4	326	$0.81 \pm .04$	2.23
Mini-hall	15	897	$0.33 \pm .04$	25.79	-	-	-	5134	$0.91 \pm .03$	23.9

Experimental Results

> Comparing for noisy T-maze where the observation probability

a) Time taken (secs) vs length of corridor

> Comparing for noisy T-maze where the observations in the corridor can be $o_{corridor}$ or o_{noise} with equal

b) Number of RDP states vs length of corridor

- when CMS is used to store empirical probability estimates, with the statistical test:
- And the size of the dataset D is at least |D|

 $d^*_{min} := \min_{t,q_t,ao} \{ d^b_t(q,ao) \mid d^b_t(q,ao) > 0 \}, \text{ and } \mu_0 \text{ is the } L^p_\infty \text{-distinguishability.}$

> Theorem 2: ADACT-H(D, δ) returns the minimal RDP **R** with probability at least $1 - 3AOQ\delta$

 $L^{p}_{\infty}(Z_{1}, Z_{2}) \geq \sqrt{8log(4(ARO)^{H-t}/\delta)/min(|Z_{1}|), |Z_{2}|)}$

$$\geq \tilde{O} \left(\frac{HC_R^* log(1/\delta)}{d_m^* \mu_0^2} \right), \text{ where }$$

- when CMS is used to store empirical probability estimates, with the statistical test: $L^{p}_{\infty}(Z_{1}, Z_{2}) \geq \sqrt{8\log(4(ARO)^{H-t}/\delta)/\min(|Z_{1}|), |Z_{2}|)}$
- $d^*_{min} := min_{t,q_t,ao} \{ d^b_t(q,ao) | d^b_t(q,ao) > 0 \}, \text{ and } \mu_0 \text{ is the } L^p_{\infty} \text{-distinguishability.}$

> Theorem 2: ADACT-H(D, δ) returns the minimal RDP **R** with probability at least $1 - 3AOQ\delta$

> Theorem 3: ADACT-H(D, δ) returns the minimal RDP **R** with probability at least $1 - 2AOQ\delta$ when using language metric $L_{\mathcal{X}}$ to define a statistical test: $L_{\mathcal{X}}(Z_1, Z_2) \ge \sqrt{2log(4 | \mathcal{X} | / \delta)/min(|Z_1|), |Z_2|)}$

And the size of the dataset D is at least $|D| \ge \tilde{O}(-1)$

where $d_{min} := min_{t,q,ao} \{ d_t^b(q,ao) | d_t^b(q,ao) > 0 \}$, and μ_0 is the $L_{\mathcal{X}}$ -distinguishability.

$$\frac{C_R^* log(1/\delta) log |\mathcal{X}|}{d_m^* \mu_0^2},$$

> Theorem 3: ADACT-H(D, δ) returns the minimal RDP **R** with probability at least $1 - 2AOQ\delta$ when using language metric $L_{\mathcal{X}}$ to define a statistical test: $L_{\mathcal{X}}(Z_1, Z_2) \ge \sqrt{2log(4 | \mathcal{X} | / \delta)/min(|Z_1|), |Z_2|)}$

And the size of the dataset D is at least $|D| \ge \tilde{O}(\frac{C_R^* log(1/\delta) log |\mathcal{X}|}{d_m^* \mu_0^2}),$

where $d_{min} := min_{t,q_t,ao} \{ d_t^b(q,ao) | d_t^b(q,ao) > 0 \}$, and μ_0 is the $L_{\mathcal{X}}$ -distinguishability.

 $\frac{(4 | \mathcal{X} | / \delta) / min(|Z_1|), |Z_2|)}{\int \frac{C_R^* log(1/\delta) log | \mathcal{X} |}{d_m^* \mu_0^2}},$ $L_{\mathcal{X}}$ -distinguishability

Proof Structure

15 Function TESTDISTINCT($t, \mathcal{X}_1, \mathcal{X}_2, \delta$) 16 | return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \ge \sqrt{2\log(8(ARO)^{H-t}/\delta)/\min(|\mathcal{X}_1|, |\mathcal{X}_2|)}$

Proof Structure

15 Function TESTDISTINCT($t, \mathcal{X}_1, \mathcal{X}_2, \delta$) return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \ge \sqrt{2\log(8(ARO)^{H-t}/\delta)/\min(|\mathcal{X}_1|, |\mathcal{X}_2|)}$ 16

Lemma 15. For $t \in [[0, H]]$, let Z_1 and Z_2 be multisets sampled from distributions p_1 and p_2 on $\Delta(\Gamma^{H-t})$, and let \hat{p}_1 and \hat{p}_2 be empirical estimates of p_1 and p_2 due to \mathcal{Z}_1 and \mathcal{Z}_2 , respectively. Under event $\mathcal{E}_{\mathcal{X}}$, if $p_1 = p_2$ then TESTDISTINCT_{\mathcal{X}} $(t, \mathcal{Z}_1, \mathcal{Z}_2, \delta)$ answers false.

Proof Structure

15 Function TESTDISTINCT(t, X_1, X_2, δ) return $L^{\mathsf{p}}_{\infty}(\mathcal{X}_1, \mathcal{X}_2) \geq \sqrt{2\log(8(ARO)^{H-t}/\delta)/\min(|\mathcal{X}_1|, |\mathcal{X}_2|)}$ 16

Lemma 15. For $t \in [[0, H]]$, let Z_1 and Z_2 be multisets sampled from distributions p_1 and p_2 on $\Delta(\Gamma^{H-t})$, and let \hat{p}_1 and \hat{p}_2 be empirical estimates of p_1 and p_2 due to \mathcal{Z}_1 and \mathcal{Z}_2 , respectively. Under event $\mathcal{E}_{\mathcal{X}}$, if $p_1 = p_2$ then TESTDISTINCT_{\mathcal{X}} $(t, \mathcal{Z}_1, \mathcal{Z}_2, \delta)$ answers false.

Lemma 16. For $t \in [[0, H]]$, let Z_1 and Z_2 be multisets sampled from distributions p_1 and p_2 on $\Delta(\Gamma^{H-t})$, and let \hat{p}_1 and \hat{p}_2 be empirical estimates of p_1 and p_2 due to Z_1 and Z_2 , respectively. Under event $\mathcal{E}_{\mathcal{X}}$, if $p_1 \neq p_2$ then TESTDISTINCT_{\mathcal{X}} $(t, \mathcal{Z}_1, \mathcal{Z}_2, \delta)$ answers true if \mathcal{Z}_1 and \mathcal{Z}_2 satisfy $\min(|\mathcal{Z}_1|, |\mathcal{Z}_2|) \ge 8\log(2|\mathcal{X}|/\delta)/\mu_0^2.$

Minimum cardinality

Related works

- > Abadi and Brafman (2020)
- > Ronca and De Giacomo (2021), Ronca, Licks et al. (2022)
- > ADACT (Balle et al), online algorithm, if applied directly gives bound

 $\widetilde{\mathcal{O}}\left(\frac{Q^4 A^2 O^2 H^5 \log}{\varepsilon^2}\right)$

- > Toto Icarte et al. (2019)
- > Mahmud (2010)
- > POMDP algorithms

$$\frac{\mathsf{og}(1/\delta)}{\max\left\{\frac{1}{\mu_0^2},\frac{H^4O^2A^2}{\varepsilon^4}\right\}}$$

> Predicitive State Representations (PSRs) and generic NMDP algorithms (Hutter 2009, Lattimore et al. 2013)

Slide from Roberto Cipollone

ADACT-H-A

least $1 - 2AOQ\delta$ when using the language metric $L_{\mathcal{X}}$ to define a statistical test $L_{\mathcal{X}}(\mathcal{Z}_1, \mathcal{Z}_2) \ge \sqrt{2\log(2|\mathcal{X}|/\delta)/\min(|\mathcal{Z}_1|, |\mathcal{Z}_2|)},$

and the size of the dataset \mathcal{D} is at least

 $|\mathcal{D}| \ge \widetilde{\mathcal{O}}\left(\overline{C}\log(1/\delta)\right)$

Theorem 17. ADACT-H-A($\mathcal{D}, \delta, \varepsilon, \overline{Q}, \overline{C}$) returns an $\frac{\varepsilon}{2}$ -approximate RDP \mathbf{R}' with probability at

$$\left(\frac{\overline{Q}AO\log|\mathcal{X}|}{\varepsilon\mu_0^2}+\frac{1}{d_m^*}\right)\right),$$

Proof Sketch for ADACT-H-A

> A state is only learned if it is frequent, i.e. $\frac{|Z(qao)|}{N} \ge \frac{3\epsilon}{10\bar{O}AOH\bar{C}}$

> For all frequent states, the proof follows as before

>For the other states, we bound $d_t^b(qao)$ with Bernstein's

>With high probability, the maximum loss for infrequent states is $\epsilon/2$.

Conclusions

> We propose two new approaches to offline RL for Regular Decision Processes and provide their respective theoretical analysis.

Conclusions

 > We propose two new approaches to offline RL for Regular Decision Processes and provide their respective theoretical analysis.
 > We also improve upon existing algorithms for RDP learning, and propose a modified algorithm using Count-Min-Sketch with reduced memory complexity.

Conclusions

> We propose two new approaches to offline RL for Regular Decision Processes and provide their respective theoretical analysis.
> We also improve upon existing algorithms for RDP learning, and propose a modified algorithm using Count-Min-Sketch with reduced memory complexity.
> We define a hierarchy of language families and introduce a language-based approach, removing the dependency on L^p_{∞} -distinguishability parameters, and compare and evaluate the performance of our algorithms.
Conclusions

> We propose two new approaches to offline RL for Regular Decision Processes and provide their respective theoretical analysis. > We also improve upon existing algorithms for RDP learning, and propose a modified algorithm using Count-Min-Sketch with reduced memory complexity. >We define a hierarchy of language families and introduce a language-based approach, removing the dependency on L^p_{∞} -distinguishability parameters, and compare and evaluate the performance of our algorithms. > Finally as a future work, we plan to expand to the online setting!

Limitations and Open Questions

> We learn acyclic abstractions, which is not useful in a lot of cases - example: Cheesemaze[1]

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

Cheese-maze

Limitations and Open Questions

> We learn acyclic abstractions, which is not useful in a lot of cases - example: Cheesemaze[1]

> We still use a uniform policy π^b in our data gathering phase.

eese-maze

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

Limitations and Open Questions

- > We learn acyclic abstractions, which is not useful in a lot of cases - example: Cheesemaze[1]
- > We still use a uniform policy π^b in our data gathering phase.
- > Future direction: Extending to the online setting

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning

eese-maze

Check out our paper here!

Thank you!