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The agent’s goal is to  
maximise this reward

Policy: Map from state to action, 
Can be deterministic  
stochastic 

a = π(s)

π(a |s) = ℙ[At = a |St = s]

Value Function: Tells the agent how good or bad a 
particular state is. 

vπ(s) = 𝔼π[Rt+1 + γRt+2 + γ2Rt+3 + … |St = s]
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Reward 
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rt+1



AlphaGo / AlphaZero

Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human knowledge

> What the agent “sees”: States of 
the board  
> Reward: At the end of the game, 
+1 or -1 
> Actions: Valid actions 
>Training: Trains by self-play
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Reinforcement Learning

The agent only gets a 
reward at the very end!

We do not know the effect of 
an action taken here

+1

We CANNOT get i.i.d data from 
the environment!



Reinforcement Learning

Code at https://github.com/ahanadeb/Flappy_birds

https://www.youtube.com/watch?v=YX_wISFwV4c
https://github.com/ahanadeb/Flappy_birds


Challenges of RL
- A lot of the RL approaches which work in real life, are often backed by 
incomplete theoretical understanding 
- A lot of exploration is required 
- The agent needs to make a LOT of mistakes to learn



Challenges of RL
- A lot of the RL approaches which work in real life, are often backed by 
incomplete theoretical understanding 
- A lot of exploration is required 
- The agent needs to make a LOT of mistakes to learn

Solution? 
> Design sample efficient algorithms with strong theoretical guarantees! 
> Offline or off-policy learning!
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Offline learning
Constraints: During the learning process, the agent CANNOT interact with 
the environment

Goal: Learning an optimal policy!

Advantages: 
> Efficient use of already available data! 
> Allows efficient learning in environments where interaction with the 
environment is risky or costly or simply not possible



Markov Decision Process

> Agent interacts with environment, with  interaction sequence  ( , 

 and  are the state, action and reward at time-step ) 

 > In MDPS, the distributions on  and  are only dependent on  and 

S0, A0, R0, S1, A1, R1… St

At Rt t

Rt+1 St+1 St At

Figure from “Reinforcement Learning: An introduction”, Sutton and Barto[1]
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Under policy π

Value of a state-action pair 
Q(s, a)

 [ ]Qπ(s, a) = Σs′ 
ℙa

ss′ 
Ra

ss′ 
+ γVπ(s′ )

Under optimal 
policy π *  [ ]V*(s) = maxa∈A(s)Σs′ 

ℙa
ss′ 

Ra
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+ γV*(s′ )  [ ]Q*(s, a) = Σs′ 
ℙa

ss′ 
Ra
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+ γmaxa′ 
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“Reinforcement Learning: An introduction”, Sutton and Barto



Non Markov Decision Process
> Non-Markovian Decision Processes exhibit explicit dependency on past 
events. 
> Agent interacts with environment to create traces of Actions, 
Observations and Rewards: 

a0o0r0a1o1r1…aHoHrH = ℰH

> Non-Markovian if doesn’t  satisfy 
  or . 
> History: Defined as a sequence, 
ot+1 ⊥ a0o0…ot−1at |ot, at+1 rt+1 ⊥ a0o0…ot−1at |ot, at+1

ht = a0o0…atot ∈ (AO)t+1 = ℋt



NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn 

> This has steered research effort towards tractable subclasses-

More POMDP domains http://www.pomdp.org/

 POMDPs: Agent operates under 
partial observability: the state space is 
hidden and mapped to an observation 
space.

http://www.pomdp.org/
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partial observability: the state space is 
hidden and mapped to an observation 
space. 
Example: 
- A robot with a malfunctioning sensor 
- Partially occluded vision, ex: Mini-hall 

domain[1] Mini-hall [1]

[1] Littman et al., 1997,  Learning Policies for Partially Observable Environments: Scaling Up



NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn 

> This has steered research effort towards tractable subclasses-

 POMDPs: Agent operates under 
partial observability: the state space is 
hidden and mapped to an observation 
space. 
Example: 
- A robot with a malfunctioning sensor 
- Partially occluded vision, ex: Mini-hall 

domain[1] Mini-hall [1]

[1] Papadimitriou and Tsitsiklis, 1987, The complexity of Markov decision Processes

However, POMDPs are often 
intractable[1]!   
Sub-problems of POMDPs- 
>undercomplete POMDPs 
>few-step reachability 
>ergodicity 
>few-step decodability 
> weakly-revealing, etc
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> can capture complex temporal dependencies  
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NMDPs
> The unrestricted dynamics of NMDPs make them intractactable to learn 

> This has steered research effort towards tractable subclasses-

 RDPs or Regular Decision Processes: 
> NMDP where the underlying dynamics can be represented by a Probabilistic 
Deterministic Finite Automaton 
> can capture complex temporal dependencies  
RDPs are essentially a subclass of POMDPs[1] where hidden states are 
determined by the history of observation!

[1] Kaelbling et al., 1998, Planning and acting in partially observable stochastic domain

> Learning the automaton 
underlying an RDP amounts to learning a 
representation of the histories! 

> Now we can work with the associated MDP!



Regular Decision Process
> In Regular Decision Processes, the next observation  and next reward  depend regularly 

on the history of the interaction (and not just the last observation and action).

ot+1 rt+1

[1] Bram Bakker, 2001 Reinforcement Learning with long short-term memory 
[2] Alfredo Gabaldon, 2011, Non-markovian control in the situation calculus   

[3]  Oh et al. Zero-Shot Task Generalization with Multi-Task Deep Reinforcement Learning  

S

G0o0

G1o1

ocorridor

+
T-maze[1]

Grid [2]

Minecraft multi-task environment [3]



Regular Decision Process
> A general non-Markov episodic decision process can be given as , with 

horizon  where  and . 

> We assume the tabular case. 

> A policy here is a mapping from history to action,  and we can define the 

values as 

⟨O, A, R, T̄, R̄, H⟩

H ∈ ℕ+ T̄ : ℋ × A → Δ(O) R̄ : ℋ × A → Δ(R)

π : ℋ → Δ(A)

Vπ
t (ht) = 𝔼[

H

∑
t+1

ri |ht, π]



Regular Decision Process
> A general non-Markov episodic decision process can be given as , with 

horizon  where  and . 

> We assume the tabular case. 

> A policy here is a mapping from history to action,  and we can define the 

values as 

⟨O, A, R, T̄, R̄, H⟩

H ∈ ℕ+ T̄ : ℋ × A → Δ(O) R̄ : ℋ × A → Δ(R)

π : ℋ → Δ(A)

Vπ
t (ht) = 𝔼[

H

∑
t+1

ri |ht, π]
> RDPs : In a regular decision process,  and  are regular functions.  
> Regularity: A function  is considered regular for finite  if, for each 

 the set   is a regular language].

T̄ R̄
f : Σ* → Ω Ω

ω ∈ Ω f −1(ω)



Regular Decision Process

Formal Definition : RDP  where, 

>  is the set of automaton states 

>  is the set of input symbol 

>  is the transition function 

>  and  are the two output functions.

⟨Q, Σ, Ω, τ, θo, θr, q0⟩

Q

Σ = AO

τ : Q × AO → Q

θo : Q × A → Δ(O) θr : Q × A → Δ(R)



Regular Decision Process

Cannot be observed 
by the agent!

Formal Definition : RDP  where, 

>  is the set of automaton states 

>  is the set of input symbol 

>  is the transition function 

>  and  are the two output functions.

⟨Q, Σ, Ω, τ, θo, θr, q0⟩

Q

Σ = AO

τ : Q × AO → Q

θo : Q × A → Δ(O) θr : Q × A → Δ(R)



Objective
> To learn minimal automata from data (episodes) from an RDP, since the number of histories is 

exponential in the horizon. 

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze

S

G0o0

G1o1

ocorridor
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S
Corresponding abstraction

> To learn minimal automata from data (episodes) from an RDP, since the number of histories is 

exponential in the horizon. 

> For any RDP, the distribution over episodes can be modeled as a PDFA.

T-maze
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Regular Policy
> A policy  is a regular policy if, for an RDP R, for two histories , for 

which , the policy over the histories are also the same, i.e.,  . 

> Every RDP has a optimal policy that is also regular.  

> We also have 

  

where .

π h, h′ ∈ ℋ

τ̄(h) = τ̄(h′ ) π(h) = π(h′ )

ℙ(et+1:H |ht, π) = ℙ(et+1:H |h′ t, π)

ei:j = aioiri…ajojrj



Offline RL in RDPs
 > Problem Statement: Given a dataset  of episodes collected from 

unknown RDP R with behavioral policy , our goal is to compute near-optimal 
policy for R, using the smallest , and find PAC sample complexity guarantees 

on the bound on required number of episodes, .

D
πb

D
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Offline RL in RDPs
 > Problem Statement: Given a dataset  of episodes collected from 

unknown RDP R with behavioral policy , our goal is to compute near-optimal 
policy for R, using the smallest , and find PAC sample complexity guarantees 

on the bound on required number of episodes, .

D
πb

D
|D |

 > We propose a modification on Cipollone 2023[1], using Count-Min-
Sketch to improve space complexity 

>  A language based approach to remove the dependency on some 
complicated distinguishability parameters 

> Respective bounds on sample complexity for offline RL in RDPs.

Cipollone et al. Provably efficient offline reinforcement learning in regular decision processes, NEURIPS 2023



ADACT-H
> We assume a fixed horizon setting, 

and an end symbol after  transitions. 

> Goal is to build a set of states 

 and 

 for any .

H

Q = Qo ⊔ Q1 ⊔ …QH+1

τ(qt) ∈ Qt+1 q ∈ Qt

qo

…

qH+1

Q0 Q1 QH QH+1



ADACT-H
> The set of states is built by time-steps. 

> At iteration 3, we have safe states 

, and candidate states 

. 

> TestDistinct compares estimates of the 

suffixes, i.e.  and 

.

Q3 = {q3,1}

Qc,3 = {q2,1ao, q2,2ao′ }

ℙ̂(e4:H |q3,1, πb)

ℙ̂(e4:H |q2,1ao, πb)

q1,1

q1,2

q2,1

q2,2

ao

q2,1ao

q3,1

q2,2ao′ 

ao′ 

t = 1 t = 2 t = 3

TestDistinct!

qo



ADACT-H
> If TestDistinct returns TRUE,  is 

promoted as a new state. 

> Candidate state  is tested against 

the safe states at . 

> Now we have to compare  

with  and , and so on

q2,1ao

q2,2ao′ 

t = 3

ℙ̂(e4:H |q2,2ao′ , πb)

ℙ̂(e4:H |q3,1, πb) ℙ̂(e4:H |q2,1ao, πb)

q1,1

q1,2

q2,1

q2,2

ao

q2,1ao

q3,1

q2,2ao′ 

ao′ 

t = 1 t = 2 t = 3

TestDistinct!

qo



ADACT-H



State Similarity

> Two dissimilar states  and  must satisfy .q q′ pq ≠ pq′ 



State Similarity

>  In ADACT-H, the metric used is the  metric, which is defined as, 

 or more accurately . 

where  and  and .

Lp
∞

Lp
∞(p1, p2) = max |p1(e*) − p2(e*) | Lp

∞( ̂p1, ̂p2) = max | ̂p1(e*) − ̂p2(e*) |

̂pi(e) = ∑
x∈𝒳q

𝕀(x = e)/ |𝒳q | 𝒳qt
= {et:H |e0:t−1et:H ∈ D τ̄(ht−1) = qt}

> Two dissimilar states  and  must satisfy .q q′ pq ≠ pq′ 



State Similarity
>  In ADACT-H, the metric used is the  metric, which is defined as, 

 or more accurately . 

where  and  and .

Lp
∞

Lp
∞(p1, p2) = max |p1(e*) − p2(e*) | Lp

∞( ̂p1, ̂p2) = max | ̂p1(e*) − ̂p2(e*) |

̂pi(e) = ∑
x∈𝒳q

𝕀(x = e)/ |𝒳q | 𝒳qt
= {et:H |e0:t−1et:H ∈ D τ̄(ht−1) = qt}

Distinguishibility Assumption 

For any two distinct states  and suffix , for an RDP R, the -distinguishability must 

be greater than , i.e., 

q, q′ ∈ Qt et:H Lp
∞

μ0 ≥ 0

Lp
∞(pq(et:H), pq′ 

(et:H)) ≥ μ0



State Similarity
> Occupancy: Occupancy of state-action-observation pair  under policy  

, 

qt, atot π

dπ
t (qt, atot) = Σ(q,ao)∈τ−1(qt)d

π
t−1(q, ao) ⋅ π(at |qt) ⋅ θ0(ot |qt, at) t > 0



State Similarity
> Occupancy: Occupancy of state-action-observation pair  under policy  

, 

qt, atot π

dπ
t (qt, atot) = Σ(q,ao)∈τ−1(qt)d

π
t−1(q, ao) ⋅ π(at |qt) ⋅ θ0(ot |qt, at) t > 0

> Single Policy RDP concentrability coefficient 

> We define the single-policy RDP concentrability coefficient of RDP R with behavorial policy  

as

πb

C*R =
t ∈ H, q ∈ Qt, ao ∈ AO

max d*t (q, ao)
db

t (q, ao)

Property: let be the RDP coefficient for R and  and be the concentrability coefficient for  

and , then . 

CR * D2 C * MR

D′ 2 CR * = C *



Count-Min-Sketch
> Count-Min-Sketch can store 

 and allows point 

queries, which returns an estimate . 

> For , Cormode and 

Muthukrishnan (2005) shows that 

with probability at least ,  

..

v = [v1, . . . , vm]

vi

δ, ϵ

1 − δ

ṽi ≤ vi + ϵ | |v | |

Updating the CMS[1] with  rows 

 and  columns.

d = log[1/δ]
w = [e/ϵ]

[1] Cormode and Muthukrishnan (2005) , An improved data stream summary: the count-min sketch and its applications
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> We define some basic patterns - 



Languages

> For  and , the operator  maps any set of languages to a new set of languages as follows:l ∈ ℕ k ∈ [l] Cℓ
k

>So far we do not take advantage of the internal structure of the suffix distributions.  

> We define some basic patterns - 



Languages

> We can define a 2-dimensional hierarchy of sets of languages,

> We define the respective language metric as   

where the probability of a language is 



Language in noisy T-maze
>  chooses East in the corridor and 

North and South at the junction with 

equal probability.  
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Language in noisy T-maze
>  chooses East in the corridor and 

North and South at the junction with 
equal probability.  
>  Since the distance between states is 
determined by the probability of single 

episode suffixes, -distinguishability 

decreases exponentially with the corridor 
length N. 

> However,        -distinguishability will be 

constant and independent of N.

πb

Lp
∞

L

S

G0o0

G1o1

ocorridor or onoise

qo

q1,1

q1,2

q2,1

q2,2

qn,1

qn,2

qf

Noisy T-maze, with equal probability of observing 
  or  in the corridorocorridor onoise



Experimental Results 
>For each domain, H is the horizon, and for each algorithm,  is the number of states of the learnt automaton,  is the 

reward of the derived policy, averaged over 100 episodes, and time is the running time in seconds of automaton 

learning. The maximum reward for all the domains is 1, except for T-maze where the reward upon reaching the goal is 4.

Q r



Experimental Results 

a) Time taken (secs) vs length of corridor b) Number of RDP states vs length of corridor

> Comparing for noisy T-maze where the observations in the corridor can be  or  with equal 

probability

ocorridor onoise



Sample Complexity Upper Bounds 
> Theorem 2: ADACT-H( ) returns the minimal RDP R with probability at least  

when CMS is used to store empirical probability estimates, with the statistical test: 

 

And the size of the dataset  is at least  ( ), where 

, and  is the -distinguishability. 

D, δ 1 − 3AOQδ

Lp
∞(Z1, Z2) ≥ 8log(4(ARO)H−t /δ)/min( |Z1 | ), |Z2 | )

D |D | ≥ Õ
HC*Rlog(1/δ)

d*mμ2
0

d*min := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 Lp
∞



Sample Complexity Upper Bounds 
> Theorem 2: ADACT-H( ) returns the minimal RDP R with probability at least  

when CMS is used to store empirical probability estimates, with the statistical test: 

 

And the size of the dataset  is at least  ( ), where 

, and  is the -distinguishability. 

D, δ 1 − 3AOQδ

Lp
∞(Z1, Z2) ≥ 8log(4(ARO)H−t /δ)/min( |Z1 | ), |Z2 | )

D |D | ≥ Õ
HC*Rlog(1/δ)

d*mμ2
0

d*min := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 Lp
∞

-distinguishabilityLp
∞

Min occupancy



Sample Complexity Upper Bounds 
> Theorem 3: ADACT-H( ) returns the minimal RDP R with probability at least  

when using language metric  to define a statistical test: 




And the size of the dataset  is at least ( ), 

where , and  is the -distinguishability.

D, δ 1 − 2AOQδ

L𝒳

L𝒳(Z1, Z2) ≥ 2log(4 |𝒳 | /δ)/min( |Z1 | ), |Z2 | )

D |D | ≥ Õ
C*Rlog(1/δ)log |𝒳 |

d*mμ2
0

dmin := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 L𝒳



Sample Complexity Upper Bounds 
> Theorem 3: ADACT-H( ) returns the minimal RDP R with probability at least  

when using language metric  to define a statistical test: 




And the size of the dataset  is at least ( ), 

where , and  is the -distinguishability.

D, δ 1 − 2AOQδ

L𝒳

L𝒳(Z1, Z2) ≥ 2log(4 |𝒳 | /δ)/min( |Z1 | ), |Z2 | )

D |D | ≥ Õ
C*Rlog(1/δ)log |𝒳 |

d*mμ2
0

dmin := mint,qt,ao{db
t (q, ao) |db

t (q, ao) > 0} μ0 L𝒳

-distinguishabilityL𝒳
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Related works

Slide from Roberto Cipollone 

> Abadi and Brafman (2020) 

> Ronca and De Giacomo (2021), Ronca, Licks et al. (2022) 

> ADACT (Balle et al), online algorithm, if applied directly gives bound 

> Toto Icarte et al. (2019) 

> Mahmud (2010) 

> POMDP algorithms 

> Predicitive State Representations (PSRs) and generic NMDP algorithms (Hutter 2009, Lattimore et al. 2013)
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Proof Sketch for ADACT-H-A
> A state is only learned if it is frequent, i.e.  

> For all frequent states, the proof follows as before 

>For the other states, we bound  with Bernstein’s 

>With high probability, the maximum loss for infrequent states is . 

|Z(qao) |
N

≥
3ϵ

10Q̄AOHC̄

db
t (qao)

ϵ/2
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> We also improve upon existing algorithms for RDP learning, and propose a  
modified algorithm using Count-Min-Sketch with reduced memory complexity. 
>We define a hierarchy of language families and introduce a language-based approach, 

removing the dependency on -distinguishability parameters, and compare and 

evaluate the performance of our algorithms. 
> Finally as a future work, we plan to expand to the online setting! 
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Limitations and Open Questions 
> We learn acyclic abstractions, which is not 

useful in a lot of cases - example: Cheese-

maze[1] 

> We still use a uniform policy  in our data 

gathering phase. 

> Future direction: Extending to the online 

setting 

πb

Cheese-maze

[1] R. Andrew McCallum, 1992, First results with utile distinction memory for reinforcement learning



Thank you!

Check out our paper here!


